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Abstract

What are the aggregate and distributional consequences of the relationship be-

tween an individual’s social network and financial decisions? Motivated by several

well-documented facts about the influence of social connections on financial decisions,

we build and calibrate a model of stock market participation with a social network

that emphasizes the interplay between connectivity and network structure. Since con-

nections to informed agents influence peers through utility and learning, there is a

pivotal role for homophily. An increase in the average number of connections raises

the average participation rate, mostly due to richer agents. Higher homophily bene-

fits richer agents by creating clusters where information spreads more efficiently. We

also show that social utility is crucial for matching stock market participation among

poorer agents. Finally, we provide empirical evidence consistent with the importance

of connectivity and sorting.
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1. INTRODUCTION

This paper explores the aggregate and distributional consequences of several intuitive and

well-documented facts about stock market participation and social networks: peers influence

stock market participation (see e.g. Hong et al., 2004; Kaustia & Knüpfer, 2012), there is

selection and sorting in social networks (Jackson, 2021), individuals can both learn from their

peers and derive utility directly from following the same strategy (Bursztyn et al., 2014), and

participation costs exist and decrease in know-how (Vissing-Jørgensen, 2002). We include

these features in a theoretical model to study the aggregate and distributional impact of

peer effects and network structure.

Specifically, we ask three questions: First, how does the average number of connections

affect equilibrium stock market participation? We refer to the average number of connec-

tions in the model as connectivity. Second, how does network structure affect stock market

participation? With network structure, we specifically mean the tendency of individuals to

sort based on similarities, often called homophily. Homophily in human interactions has long

been studied in sociology and economics (Verbrugge, 1977; Jackson, 2014), and refers to the

tendency of people to associate with others who are like them. Third , does social learning

and social utility have different implications for stock market participation? For all ques-

tions, we consider the answer at the aggregate level and for different income groups. These

questions are crucial for understanding how social networks affect stock market participation

and help us formulate several intriguing avenues for future research.

With these goals in mind, we build and calibrate a model of stock market participation

where all agents can share information in a network. Agents in the model have to pay a fixed

cost to enter the stock market, a common approach to modeling the decision to invest in

stocks. Fixed costs capture monetary, behavioral, and non-pecuniary costs that make stock
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ownership uncomfortable for some households (Campbell, 2006).1 The agent must decide

whether to enter the stock market and, conditional on entry, determine the optimal portfolio

allocation.

Both the entry decision and the optimal portfolio allocation depend on the number of

peers who invest in risky assets. Motivated by the previous literature (e.g. Bursztyn et al.,

2014), we assume that agents can both learn from their peers (social learning) and that they

derive utility from making the same choice as their peer (social utility). Social learning in

our model affects the precision of the expected return. We model social utility as a reduction

in the fixed participation cost, making the benefit of having more peers independent of the

return. In the baseline model, we include both these channels, but later we examine each

separately.

All agents in the economy are connected with an ex-ante connectivity parameter that

determines each agent’s expected number of links. The likelihood of connecting with another

agent depends on a homophily parameter, defined as the difference between the probability

of connecting with an individual with a similar income and the probability of connecting with

one from a different income group. High homophily means that agents with low income are

more likely to be connected to low-income agents than to high-income agents, and vice versa.2

While the model is parsimonious, the setting is rich enough that we require simulations to

answer the questions we are interested in.3

The model endogenously generates an S-shape relationship between connectivity and

stock market participation. At low levels of connectivity, information sharing is limited, and

1Participation costs can be defined as money and time spent to invest in the stock market (Haliassos
& Bertaut, 1995; Briggs et al., 2021), or as an economist’s representation of behavioral and psychological
factors that make stock ownership uncomfortable for some households (Campbell, 2006).

2Although we have chosen to focus on income homophily, we later show results when homophily is
unrelated to factors that determine stock market participation. There is evidence of homophily in many
other characteristics, for example, age, gender, years of schooling, religion (Verbrugge, 1977), and there is
also evidence of homophily in personality characteristics (Morelli et al., 2017) and risk aversion (Jackson
et al., 2023).

3We ensure that the simulations are robust by including a large number of agents and running results for
several different assumptions over various model parameters.
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participation rates are low. Keeping all other model parameters constant, as connectivity

increases, more agents participate, become informed, and spread information, and partici-

pation rapidly increases. However, the information diffusion process slows down at higher

levels of connectivity. When the average number of links per agent becomes large, a giant

component of connected and informed agents form in the network. At this point, the infor-

mation propagation becomes more efficient and the potential of individual agents to block

information flow significantly diminishes. Consequently, adding more connections has little

impact on stock market participation. We also show that a marginal increased connectivity

mainly benefits richer agents, who are closer to participating and thus need fewer informed

connections. Homophily in social networks alters the relationship between connectivity and

stock market participation in nuanced ways. Suppose connectivity is low and homophily

increases. Agents then become more likely to be connected to others with similar incomes

and the model endogenously generates clusters of high-income agents who can cover the

fixed costs and clusters of low-income agents without an opportunity to learn from informed

peers. In sparse networks, higher homophily has a small but positive impact on average stock

market participation because of more efficient information transmission among rich agents.4

The increase in participation is concentrated among wealthier agents, leading to an increase

in ex-post inequality. However, once all rich agents participate, the same low connectivity

and high homophily prevent poor agents from starting to invest in stocks. We also consider

the effect of homophily attributed only to high-income agents, gated community effect, and

find that it negatively affect stock market participation level in the economy overall.

Higher ex-ante inequality also affects the relationship between connectivity and stock

market participation. Assuming that agents exhibit homophily in income, income inequality

affects the probability that agents with information are connected to other agents. Higher

inequality can generate higher participation rates since income is concentrated among agents

4However, once homophily is very high or equal to one, the effect turns negative with higher homophily
leading to lower stock market participation. In extreme cases, some disjoint components prevent information
transmission between different income groups.
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who can almost cover the fixed cost. With higher connectivity, however, increased inequality

generates lower participation since inequality leads to higher clusterization, decreasing the

likelihood of being connected to informed peers. Furthermore, while keeping average income

the same, higher inequality shrinks the share of agents who can pay the fixed participation

costs and decreases stock market participation.

In the final part of the paper, we study the implications of learning and social utility

for stock market participation. Recall that social learning affects expected returns, whereas

social utility affects the fixed participation costs. While both models can match the average

participation rates, only the model with social utility allows for a more balanced distribution

of stock market participation (SMP) across different income groups that is aligned with the

data. The model with only social learning channel generates either too high participation

among rich agents or too low participation among low-income agents. We show that the

social utility channel is particularly important for encouraging participation among low-

income agents, as it helps overcome the high participation costs. In contrast, learning more

stock market returns has a relatively smaller impact for these agents, as they typically have

limited resources to invest. For high-income agents, however, the social learning channel

becomes increasingly more significant in the decision to participate in the stock market.

Empirically, we show that a general connectivity measure, the Social Connectedness

Index (SCI) from Facebook (Bailey et al., 2018), does not predict variation in stock market

participation across US counties. Instead, stock market participation strongly correlates with

economic connectedness, a measure that conveys information about the connectivity between

individuals with a high- and low socioeconomic status (Chetty et al., 2022a). Economic

connectedness explains 43 percent of the variation in stock market participation across US

counties, whereas the SCI only explains 2 percent. These results are robust to including

controls (e.g., income, age, education) and state-fixed effects and is economically significant.

This pattern is an aggregate consequence that our model can explain. Viewed through the
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lens of our model, economic connectedness measures connections between individuals who

can benefit from information about the stock market.

We believe important questions immediately follow from the ideas in this paper. For

instance, quantifying how important rising polarization or increases in homophily are for ex-

plaining flat stock market participation rates since 2000 is an exciting possibility for future

research in the United States or other countries. Another intriguing question is whether

homophily in social networks has changed in a manner relevant to stock market participa-

tion. Our results highlight that homophily matters for participation decisions only if it is

related to factors determining stock market participation, such as income. The results also

provide a theoretical framework for linking rising polarization to wealth inequality, given the

importance of differences in returns for wealth inequality (Bach et al., 2020; Fagereng et al.,

2020). Finally, if informed peers are an important source of information, as the literature

would suggest, then it is important to ask who has access to such information. To what

extent can we explain the lack of stock market participation among poorer households sim-

ply because they have no one to ask about how to invest? These questions provide a new

way forward for a literature that has established the importance of informed peers for stock

market participation but has not yet studied the aggregate and distributional impact of the

individual-level results.

Consistent with the rest of the literature, our model highlights that access to peers is

an important determinant of stock market participation. In a more unequal society or in

a society with a higher degree of homophily, an important source of information will be

unable to low-income households. While it seems difficult to reverse trends in homophily

through policy interventions, policymakers should be aware that increased sorting by income

or wealth can lead to negative outcomes in the lower parts of the income distribution. To

the extent that financial education is effective, policymakers should be aware that financial

education may have to replace peer effects, and should aim to target these interventions in
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highly-connected but uninformed parts of the distribution to maximize their impact.

Related literature. Our paper intersects with several strands of the large literature on

household financial decision-making and peer effects. First, a large literature investigates

the economic and social drivers of inequality (see Jackson, 2021, and citations within). Ho-

mophily in social networks is linked to inequality through unequal access to jobs through

social connections, unequal awareness of opportunities, unequal information on how to take

advantage of opportunities, and differences in norms. Recent studies have documented that

wealthier households earn higher returns (Bach et al., 2020; Fagereng et al., 2020) because

of heterogeneity in individual skill, risk exposure, or access to information. Our framework

suggests that differences in financial information can arise because of homophily in social

networks.

Second, a large literature has documented that social interactions between agents affect

financial decisions (Brown et al., 2008; Kaustia & Knüpfer, 2012; Bursztyn et al., 2014;

Changwony et al., 2014; Hvide & Östberg, 2015; Knüpfer et al., 2017; Arrondel et al., 2022;

Patacchini & Rainone, 2017; Haliassos et al., 2020; Ouimet & Tate, 2020; Balakina, 2022;

Balakina et al., 2024). Recent papers have also studied how social interactions affect portfolio

composition and financial mistakes (Ammann & Schaub, 2021; Heimer & Simon, 2015; Hvide

& Östberg, 2015; Heimer, 2016; Lim et al., 2020; Han et al., 2022), suggesting that peer effects

do not always lead to better outcomes.5 We argue that a potentially important yet overlooked

aspect of peer effect in finance is to examine the distribution and clustering of informed

agents.6 Most of the empirical literature on peer effects in stock market participation focuses

on the challenging question of documenting that peer effect exists but spends little time

investigating who has access to informed peers.

Third, the limited stock market participation puzzle has been a major subject in finance

5Our model is primarily about participation decisions, and so is not ideally suited to studying peer effects
and financial mistakes.

6An exception is Fagereng et al. (2022), who examine sorting due to assortative mating.
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dating back to Arrow (1965).7 Standard models of stock market participation show that

moderate participation costs can explain the non-participation of many US households but

not the richest ones (Haliassos & Bertaut, 1995; Vissing-Jørgensen, 2002). Recent papers

have also argued that entry- and exit rates are important for understanding the limited

participation puzzle (Bonaparte et al., 2018; Brandsaas, 2021). Empirical work on partici-

pation costs suggests that many households face high non-pecuniary costs to participation

(Andersen & Nielsen, 2010; Briggs et al., 2021), and that peers can lower these costs (Duraj

et al., 2024). By allowing participation costs to vary with social connectivity, we generate

heterogeneity in the costs unrelated to income or financial education. This assumption can

help explain limited stock market participation rates in the cross-section.

Fourth, our paper relates to the literature on the linear threshold models (LTM), which

are widely used to study the spread of behaviors, ideas, and adoption decisions across social

networks (Morris, 2000; Watts, 2002; Granovetter, 1978; Vega-Redondo, 2007). Differently

from many papers which study the linear threshold models in the context of optimal seeding

(Kempe et al., 2003; Chen et al., 2010), we emphasize the importance of network structure,

particularly the roles of homophily and inequality, in shaping information propagation in

the network with limited participation (Lelarge, 2012). Our findings are consistent with

Acemoglu et al. (2011), who demonstrate that networks with high clustering and short-

range links may be less effective at spreading information compared to networks with lower

clustering and more long-range connections.

Finally, a large literature in banking has documented the importance of network struc-

ture for financial stability and contagion.8 Nonetheless, we view the ideas in this paper as

important and novel in the context of household financial decision-making. The empirical

literature in household finance has focused on the (hard) question of providing plausible

7See e.g. Mehra & Prescott (1985), Fama & French (2002), Mankiw & Zeldes (1991), Haliassos & Bertaut
(1995), Heaton & Lucas (2000), Brav et al. (2002) and Vissing-Jørgensen (2002).

8See e.g. Bernard et al. (2022), Allen & Gale (2000), Morris (2000), Elliott et al. (2014), and Amini et al.
(2016).
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evidence that peers affect financial decisions but has not yet tackled the aggregate or distri-

butional implications. Our results suggest that ceter paribus, higher homophily leads to a

larger gradient in stock market participation, which increases inequality. In addition, higher

inequality leads to less stock market participation among low-income individuals because

inequality affects network structure in the presence of homophily. Both these feedback loops

are important to consider when discussing the causes and consequences of rising inequal-

ity.

The rest of the paper proceeds as follows. Section 2 provides the model, and Section 3

provides the results from the model simulations. Section 5 discusses the empirical evidence

for the cross-section of US counties, Section 6 concludes.

2. THE MODEL

In this section, we propose a stylized model to examine how the interaction between connec-

tivity, homophily, and other economic factors influences both average stock market participa-

tion and participation across different income groups. We cover two main model components

in this section.

First, we introduce utility maximization problem in which an individual agent faces stock

market participation costs, in accordance with the literature on stock market participation

and information acquisition in financial markets, particularly the works of Vissing-Jørgensen

(2002); Cocco et al. (2005); Peress (2004, 2005). Participation costs can be interpreted as

expenses associated with opening an investment account, paying brokerage fees, and similar

activities (Vissing-Jørgensen, 2002), or as psychological barriers to entering the stock market

(Andersen & Nielsen, 2010; Briggs et al., 2021; Duraj et al., 2024). The agent must decide

whether to enter the stock market and, conditional on entry, determine the optimal portfolio

allocation. Both decisions depend on the number of peers who invest in risky assets and

potentially share information about stock market returns.
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Next, we extend the model analysis to the aggregate level. We describe how agents are

embedded in a social network and how their social connections influence stock market par-

ticipation.9 In the baseline specification, we incorporate two primary mechanisms through

which social influence can affect stock market participation. First, an agent’s utility from

owning a stock or stock index may depend on whether their peers also own the asset. We

refer to this mechanism as social utility (Abel, 1990; Gali, 1994; Campbell & Cochrane,

1999; Taylor, 2011).10 Second, an agent receives additional information about stock market

performance from peers who are already investing (Peress, 2004, 2005), and agents who re-

ceive more signals benefit from greater accuracy in their posterior beliefs about stock market

returns (Arrondel et al., 2022). We refer to this mechanism as social learning. We introduce

heterogeneity among agents through initial endowment and financial sophistication.

We conclude this section by discussing the diffusion of social influence in the model and

by examining its equilibrium properties.

2.1 GENERAL SETTING

We introduce a one-period, closed-economy model that describes the financial behavior of

an agent within a social network. At the beginning of the period, the agent is endowed

with initial wealth, which we can interpret as discretionary income, and allocates it between

a risk-free asset and a risky asset, such as a stock index. At the end of the period, the

agent consumes the proceeds from her investment portfolio in the form of a non-durable

consumption good.

We study the optimal portfolio choice of an agent with constant relative risk aversion

(CRRA) utility function who decides how much to invest in a risky asset with log-normally

distributed return factor (Merton, 1969; Samuelson, 1975). The utility function of agent i

9We do not distinguish between entry and participation cost of the stock market due to the fact that our
model has only one period.

10The social utility channel is closely related to imitation, where an agent observes and adopts their peers’
investment behavior, inferring that it is beneficial.
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is:

Ui (W1,i) =
W1,i

1−γ

1− γ
, γ > 0, (1)

where W1,i defines the level of wealth of agent i at the end of the period, and γ is the level of

relative risk aversion of the agent. Agents have initial endowmentW0 = {W0,1, ...,W0,j, ...W0,n}

distributed as Fw (·), W0,j ∼ Fw (·).11

The economy offers two investment opportunities. An agent can choose between investing

her initial endowment in a risk-free asset with a net return of Rf or investing in a risky asset

with a log-normally distributed return factor Ra, where ra = log(Ra) is normally distributed.

If agent i decides to invest in the risky asset, she faces a participation cost, Fi, at the

beginning of the period.12

Given that the terminal wealth W1,i is equal to proceeds from the investment portfolio,

we can define W1,i as

W1,i = αi(W0,i − Fi)Ra + (1− αi)(W0,i − Fi)Rf = (W0,i − Fi) (αi(Ra −Rf ) +Rf )︸ ︷︷ ︸
≡Rp

, (2)

where αi is the portfolio share allocated to the risky asset, and Rp is a portfolio return where

the portfolio consists of risk-free and risky assets.

When deciding whether to invest in the risky asset, agent i considers both the magnitude

of the fixed entry cost and her beliefs about the asset’s performance. We assume that peer

effects influence both factors.

11The inequality parameter is implicitly captured by the particular functional form of the function Fw (·).
We do not make any specific assumption on function Fw (·) for the general setting of the model. However,
we will assume a log-logistic wealth distribution in the simulation part.

12The costs include factual values and perceived expenses associated with stock market investment (Duraj
et al., 2024).
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2.2 SOCIAL INFLUENCE

A key component of the model is the assumption that agents in the economy belong to a

social network and face peer influence. We model two different mechanisms how an agent’s

investment choice is affected by her peers’ stock market participation: social utility and

social learning.

Social utility refers to the direct effect of peer j’s stock market participation on agents i’s

utility. This effect may arise for various reasons widely discussed in finance literature. For

example, agents may be concerned with their incomes or consumption levels relative to their

peers, commonly referred to as “Keeping up with the Joneses” (Abel, 1990; Campbell &

Cochrane, 1999; Georgarakos & Inderst, 2014). Alternatively, peer j’s stock market invest-

ment may affect agent i’s utility through ”joint consumption” of the assets: peers can follow

and discuss financial news together or track their joint returns (Taylor, 2011; Bursztyn et al.,

2014). Both of these explanation imply a higher utility from investing in stocks, irrespective

of the return to investing.

We formally model the social utility channel through the participation costs. When

deciding whether to invest in the stock market, agent i experiences lower fixed costs if more

of her peers invest in stocks, thus making the agent more likely to start investing herself.

The entry cost can be described as follows:

Fi = Fi,0 − θpi (3)

The participation costs paid by agent i, Fi, is a function of initial participation costs Fi,0

and the number of agent i’s peers who already invest in the risky asset, pi. In (3), θ is

an exogenous parameter that controls for how much the participation cost diminishes with

every additional peer-investor. If an agent i has no peers already investing in the risky asset,

the cost function is given by Fi(θ, Fi,0, pi = 0) = Fi,0. Consequently, an agent who has
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more informed peers faces lower participation costs, ∂Fi

∂pi
= −θ < 0. Modeling social utility

channel through participation costs with more peer-investors decreasing costs, consequently

increasing utility, offers a simplified representation of the keeping up with the Joneses effect

(Abel, 1990) that helps keep the model tractable.

Social learning occurs when an agent acquires valuable information about stock market

investments from her peers. Consider an agent i deciding whether to purchase a risky asset

under uncertainty. When making this decision in isolation, agent i relies solely on her prior

beliefs about market performance and invests only if the signal has sufficiently high precision.

Within a social network, however, agent i can learn from her investing peers, allowing her

to update beliefs and increase the signal precision. As a result, information shared by peers

increases the likelihood of agent i’s stock market participation compared to making the

decision alone.13

We assume that in the economy each agent, when deciding to enter the stock market,

faces a noisy signal about the expected return on risky asset, with ra = µ+ ϵ, ϵ ∼ N(0, σ2
0).

Additionally, agents anticipate that upon entry, they will acquire signals from their informed

peers, peers-investors, at no cost.14 Among peers who share information about the stock

market, each peer j provides an independent signal sj such that sj = ra + εj, where εj ∼

N(0, σ2
p).

15

Suppose agent i has pi = ki+li peers, of whom only ki generate informative signals about

stock market returns.16 Let Ii denote the information structure of agent i representing her

posterior belief about ra given her aggregated signal, ra|Ii ∼ N(µpost,i, σ
2
post,i). The posterior

13Canonical models of herding behavior and asset-price bubbles are rooted in social learning and extensively
analyze its implications for financial markets (Bikchandani & Sharma, 2000; Chari & Kehoe, 2004).

14The modeling approach is similar to Peress (2003). However, we ignore the possibility of the agents to
purchase better signals, as discussed in section 6.3 of Peress (2003). The possibility of acquiring an additional
signal would contribute to even higher differences in incentives for stock market participation between rich
and poor agents since the wealthy can afford to pay more for the information.

15We will define the exact rule of how and which peers share this information in Section 2.5.
16Alternatively, we could distinguish between ki high- and li low-precision informative signals. However,

to minimize the number of parameters, we interpret low-precision signals as completely uninformative.
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mean and variance of the risky-asset return are as follows:

µpost,i =

µ
σ2
0
+

∑k
j=1 sj

σ2
p

1
σ2
0
+ ki

σ2
p

σ2
post,i =

1
1
σ2
0
+ ki

σ2
p

. (4)

In line with the conjecture in Arrondel et al. (2022), agents with a higher number of peers-

investors receive more signals and benefit from greater precision in their posterior beliefs

about stock market returns. Thus, due to social learning, agents with more informed peers

are more likely to participate in the stock market. Thornton (2021) find evidence that peers

influence financial expectations, consistent with this channel.

2.3 FINANCIAL EDUCATION

In addition to heterogeneity in initial endowment, we assume that agents differ in their finan-

cial sophistication: Two types of agents populate the economy: Financially Educated and

Non-Financially Educated (Van Rooij et al., 2011; Behrman et al., 2012). For tractability, the

type of agent i is denoted by ti, where ti equals one if agent i is Financially Educated and zero

if she is Non-Financially Educated. The two types of agents differ in their participation cost

Fi,0. Financially Educated agents have ex-ante knowledge about the investment in the risky

asset, meaning their fixed entry cost is zero, F0,i(ti = 1) = 0. Consequently, if a Financially

Educated agent expects a positive return on stock market investment, she will with certainty

enter the stock market.17 Whereas Non-Financially Educated agents do not have ex-ante

knowledge about the stock market and face high participation cost, Fi,0(ti = 0) = F0 >> 0.

Both types of agents are subject to social influences, both social utility and social learning.

However, due to their low fixed costs, Financially Educated agents enter the stock market

17The necessary assumption is that Financially Educated agents have lower participation costs than Non-
Financially Educated agents. Zero cost always satisfies this condition and guarantees maximum participation
of Financially Educated agents. Any positive cost will generate a lower participation level among Financially
Educated agents and a lower equilibrium participation level in the economy.
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immediately, rendering social influence negligible.

2.4 THE AGENT’S OPTIMAL INVESTMENT DECISION

We first consider the decision problem of an individual agent i who chooses whether to enter

the stock market and, upon entry, how much to invest in the risky asset within the previously

described economy. At first, based on her prior beliefs, type, and income, agent i observes

the number of peers who participate in the stock market and anticipates how many of them

will provide her with informative signals upon entry.18 She then decides whether to enter the

stock market. Next, after entering the market, agent i, conditional on the realized signals,

determines the optimal portfolio share for the risky asset, αi.
19

We solve agent’s investment problem using backward induction. Conditional on entry,

agent i solves the following portfolio optimization problem

maxαi
E[U(W1,i)|Ii] = maxαi

E

[
W 1−γ

1,i

1− γ

∣∣∣Ii

]
, (5)

s.t W1,i = αi(W0,i − Fi)Ra + (1− αi)(W0,i − Fi)Rf = (W0,i − Fi) (α(Ra −Rf )−Rf )︸ ︷︷ ︸
≡Rp

,

where Rp = erp denotes the portfolio return factor where the portfolio consists of risk-

free and risky assets, and Ii denotes agent i’s information set based on a particular signal

realization. In line with standard approximation in financial literature (Campbell & Viceira,

2002), rp = log(Rp) can be expressed as follows.

rp = rf + αi(ra − rf ) +
1

2
αi(1− αi)σ

2
post,i.

18Specifically, we assume that agent i expects ki of her investing peers to share information about stock
market returns, helping her make more informed financial decisions and optimize her future portfolio.

19Since we impose no restrictions on her investment strategy, we expect this share to be almost surely
nonzero.
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Solving (5) for αi, we get the optimal portfolio share allocated to the risky asset:20

α∗
i =

1

γ

E(ra − rf |Ii) +
1
2
V ar(ra|Ii)

V ar(ra|Ii)
, (6)

The optimal risky share, α∗
i , depends on the agent’s risk-aversion, γ, and on her posterior

beliefs about the asset performance, E(ra − rf |Ii) and V ar(ra|Ii).

Now, knowing the optimal portfolio share, we can rewrite the expected utility function

and consider the entry decision. Conditional on market entry, obtaining signals, and choosing

optimal portfolio share α∗
i , the expected utility of the agent is

E[U(W1,i, α
∗
i )|Ii] =

(W0,i − Fi)
1−γ

1− γ
e

(1−γ)

(
4σ2

post,i(µpost,i+(2γ−1)rf)+4(rf−µpost,i)
2+(σ2

post,i)
2
)

8γσ2
post,i .

Notice that before entering the stock market, the agent does not know the specific realization

of the signals. However, she expects that, conditional on obtaining signals, the posterior

distribution of the risky asset return follows ra|Ii ∼ N(µpost,i, σ
2
post,i). Since µpost,i depends

on the actual realization of the signals, it is unknown ex-ante. Therefore, provided that agent

i receives at least one informative signal ki ≥ 1, she forms beliefs about the distribution of

µpost,i, which follows21

µpost,i ∼ N
(
µ, σ2

µ,i

)
,where σ2

µ,i = σ2
post,i + σ2

0(σ
2
post,i)

2

(
ki
σ2
p

)2

,

If the agent does not expect to receive any signals (ki = 0), her posterior distribution remains

identical to her prior, meaning that µpost,i = µ.

As a result, agent i enters the stock market if her expected utility is above
W 1−γ

0,i

1−γ
, and she

doesn’t enter otherwise. Let’s denote by σi the strategy of agent i, where σi is 1 if the agent

decides to enter the stock market, and 0 otherwise. The optimal decision to enter the stock

20Appendix D.1 describes the detailed solution of the problem in (5).
21See Appendix D.1 for the proof.
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market for agent i, which depends on her type, initial wealth and number of peers-investors,

generating informative and uninformative signals, can be described as follows:

σi(W0,i, ti, ki, li) =


1, if fi(W0,i, ti, ki, li) ≥ 0

0, if fi(W0,i, ti, ki, li) < 0,

(7)

where

fi(W0,i, ti, ki, li) = E

[
W 1−γ

1,i

1− γ

∣∣∣ti, ki, li]− W 1−γ
0,i

1− γ
. (8)

E

[
W 1−γ

1,i

1−γ

∣∣∣ti, ki, li] represents the expected utility conditional on entering the market before

signals realization.22

Important to notice that with the number of peers-investors providing informative signals

approaching infinity, ki → ∞, the variance of the aggregated signal converges to zero. In

this case, agent i always prefers to enter the market, as she expects to obtain highly precise

information about market returns. If the expected return falls below the risk-free rate, agent

i instead opts for a short position in the risky asset.

2.5 INFLUENCE PROPAGATION IN THE SOCIAL NETWORK

All agents in the economy belong to a social network. The structure of the network is

described by {N,G,W, T, SP} , where N is a set of agents-nodes of cardinality n, the number

of agents in the economy. G is an n × n adjacency matrix describing connections between

agents in the network: G = {gij, ∀i, j ∈ N such that gij = gji = 1 if i and j are linked, and

gij = gji = 0 otherwise}. A link between agents i and j signifies that they can communicate,

and thus, they can exert influence on each other. We use the term “influence” to describe

the process through which agent i affects agent j’s stock market participation. It can go

through the social utility or social learning or both both. Ex-ante influence can propagate in

22The details of derivation of E

[
W 1−γ

1,i

1−γ

∣∣∣ti, ki, li] are provided in Appendix D.1.
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either direction, but the actual communication patterns and the direction in which influence

propagates – whether from i to j or vice versa – emerge as equilibrium outcome of the

model. Section 3.5 details how the matrix G is generated given specific model parameters,

connectivity and homophily.

W = W0,1, ...,W0,n is a vector of length n that describes the initial discretionary income

allocated to each agent in the network, while T = t1, ..., tn is a binary vector identifying

agent’s type based on financial education. For agent i, both W0,i and ti are exogenously

given and independent of the influence propagation process, yet they directly affect the

decision to participate in the stock market. Finally, vector SP captures signal precision,

where spi = 1 indicates that agent i generates an informative signal when investing and

communicating with peers, whereas spi = 0 means agent i does not generate informative

signals. We assume that all financially educated agents always produce informative signals.

In contrast, among non-financially educated agents who participate in the stock market, only

a proportion rh generate informative signals. We treat the type of signals agents can generate,

given a specific network realization {N,G,W, T, SP}, as exogenously determined. However,

the influence propagation process determines if they actually generate the signals.

To reduce the number of parameters in the model, we introduce the concept of a Par-

ticipation Threshold Set. For any agent i, investment in the risky asset now depends on the

composition of her peers in terms of information quality. Specifically, we define a Participa-

tion Threshold Set as a set of pairs (k̂i, l̂i), such that

Ŝi ={(k̂i, l̂i) ∈ N× N | ∀(k, l) with k ≥ k̂i, l ≥ l̂i, fi(k, l) ≥ 0, (9)

and ∀(k, l) with k ≤ k̂i, l ≤ l̂i, and (k < k̂i or l < l̂i), fi(k, l) < 0},

where k̂i represents the number of peers generating high-precision signals about the stock

market, and l̂i represents the number of peers investing but not generating any signals, with

function fi(k, l) defined in equation (8). Agent i invests in the risky asset if she has a

17



peer-group composition that meets at least one of the combinations in Ŝi. In other words,

the Participation Threshold Set defines a set of (ki, li) pairs, where each pair represents a

pivotal mix of the agent i’s peers-investors, generating informative signals and not, that

guarantees the agent’s stock market entry. The composition of pairs in Ŝi depends on the

agent’s discretionary income, W0,i, and type, ti.
23

For Non-Financially Educated agents with high income, the fixed entry costs are smaller

relative to income than for agents with low income. Consequently, high-income agents require

lower social influence from their peers to start investing compared to the low-income agents.

All Financially-Educated agents have a “zero” participation threshold pair, Ŝi(ti = 1) =

{(0, 0)}, since they already possess all the necessary information about the stock market. The

introduction of participation threshold sets allows us to redefine the initial network structure

as {N,G, S, SP}, where Ŝ = (Ŝi)i∈N is a vector of participation thresholds sets.

Agents who are connected can communicate with one another. Each agent determines

whether to invest based on the expected number of informative signals received and the

number of her peers-investors. An agent’s strategy as a binary choice of whether to invest

in the stock market or not is formally described by Equation (7) in the previous section.

This decision depends on the agent’s type, characterized by the participation threshold set

Ŝi, as well as the total number of peers investing (ki + li) and those providing informative

signals (ki). Let P+(i) denote the set of agent i’s participating peers. The number of

peers influencing agent i through the social utility channel is given by the size of this set,

pi = |P+(i)|. Let K(i) ⊂ P+(i) represent the subset of agent i’s peers who in addition

to investing in stocks also share informative signals, thereby influencing agent’s decision

through the social learning channel. The size of this set is ki = |K(i)|.

Now we can define a strategy of player i as a mapping σi(Ŝi, pi, ki) : N × N 7→ {0, 1}.

We have σ(Ŝi, pi, ki) = 1 if the agent decides to participate, and σ(Ŝi, pi, ki) = 0, otherwise.

23We formally investigate key properties of this set in Appendix D.1
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According to equation (7), the best response function of player i requires σ(Ŝi, pi, ki) = 1 if

∃(k̂i, l̂i) ∈ Ŝi, s.t. ki ≥ k̂i and pi − ki ≥ l̂i. Otherwise, we require that σ(Ŝi, pi, ki) = 0.

An agent who decides to participate in the stock market subsequently exerts influence on

her peers. This interaction gives rise to a stock market participation influence propagation

network, represented by the adjacency matrix X. While the adjacency matrix G captures

potential connections between agents, matrix X represents the actual transmission of social

influence. The influence propagation process, and thus matrix X, must satisfy the properties

described in Definition 1.

Definition 1. The stock market participation influence propagation process de-

scribes how agents in a network influence each other’s decisions regarding stock market par-

ticipation. This process is represented by the adjacency matrix X, where xij ∈ X equals 1 if

agent i exerts influence on agent j and xij = 0 otherwise. The influence propagation process

satisfies the following properties:

1. Agents i and j can only exert influence on each other if they are peers according to

network {N,G, S, SP}. Formally, xij = 1 only if gij = 1.

2. Influence flows in only one direction between any pair of connected agents. Specifically,

for any i and j, either i influences j or j influences i, or there is no social influence

between them, xij + xji ≤ 1.

3. If agent i exerts influence on j (xij = 1), then agent j experiences a reduction in stock

market participation costs either trough social utility channel or through both social

utility and social learning.

4. If agent i participates in the stock market, she influences on all her connected peers

who do not already exert influence on her. Formally, if σi = 1 and agents i and j

are connected, gij = 1, then either j exerts influence on i or i exerts influence on j,

xij + xji = 1.
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A set of agent i’s participating peers who exert influence on i through the social utility

channel is defined as P+
i = {j ∈ N |xji = 1, xji ∈ X}, and the total number of such peers

is given by pi =
∑n

j=1 xji. Similarly, the set of agent i’s participating peers who provide

additional influence through the social learning channel is Ki = {j ∈ N |xji × spj = 1, xji ∈

X}, and ki =
∑n

j=1 xji × spj. These sets are endogenously determined for each agent as an

equilibrium outcome.

Importantly, we assume that influence propagation is one-directional. If agent i partic-

ipates in the stock market and is connected to agent j, one of two outcomes occurs: either

agent i influences agent j’s decision, reducing j’s stock market participation costs, or agent

j influences agent i’s decision, reducing i’s participation costs. This assumption rules out

mutual reinforcement, where agent i decides to participate solely because she expects j to

participate, while agent j does the same based on her expectation that i will participate.24 In

Appendix E, we examine how allowing two-way influence propagation alters the equilibrium

and analyze the best possible outcome for a given network structure under full cooperation.

However, in the context of stock market influence propagation, such cooperation is unlikely,

so our primary focus is on non-cooperative outcomes.

However, we show that imposing a one-directional influence propagation condition is

not sufficient to eliminate all potential cooperative outcomes. To illustrate this, consider a

network consisting of 6 agents. For simplicity and clarity, we assume that agents do not share

any informative signals, ∀spi ∈ SP, spi = 0, meaning they influence each other’s decisions

solely through the social utility channel. Consequently, the vector of relevant participation

24Our main analysis follows a one-way influence flow approach, similar to Bala & Goyal (2000) minimal
network formation idea. In a dynamic setting, this approach would correspond to an agent making a
participation decision based only on peers who have already invested, rather than on the expected number
of future participants whose choices depend on the agent’s own decision. Conceptually, one-way influence
propagation does not imply that participating peers cannot later exchange information or exert social utility
on one another. Rather, it means that, at the moment of deciding to participate, agents cannot rely on
potential future connections to peers who have not yet joined. Our approach captures this idea within a
static framework, without explicitly modeling a dynamic process. We also explore additional results for a
two-way information flow model in Appendix E.
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thresholds is given by

∀i ∈ N, {(0, l̂i) | (0, l̂i) ∈ Ŝi} = {{(0, 0)}, {(0, 1)}, {(0, 2)}, {(0, 2)}, {(0, 1)}, {(0, 1)}}.

The following adjacency matrix G represents the connections between the agents:

G =



0 1 1 0 0 0

1 0 1 0 0 0

1 1 0 1 0 0

0 0 1 0 1 1

0 0 0 1 0 1

0 0 0 1 1 0


Figure 1a illustrates the network structure {N,G, Ŝ, SP}. The colored circles correspond to

agents who can potentially invest in the risky asset. The assigned numbers represent the

participation thresholds l̂i for each agent given that k̂i = 0. Black edges indicate connections

between agents through which they can exert influence on each other’s stock market partic-

ipation decisions. Figures 1b and 1c depict two possible ways in which communication flows

within the network. In these figures, red-colored nodes correspond to agents who participate

in the stock market, while red edges illustrate the actual direction of influence. A red edge

from agent i to agent j signifies that agent i exert influence on agent j. The corresponding

adjacency matrices, which formally capture the realized flow of influence, can be constructed

for each case. Case 1 (1b) adjacency matrix X, and Case 2 (1c) adjacency matrix X ′ are as
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follows:

X =



0 1 1 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


X ′ =



0 1 1 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 1 0 0


.

In both cases, agents participate in the stock market if pi = li ≥ l̂i. Any agent who does not

participate has no outgoing edges. Any agent who does participate has either incoming or

outgoing edges to their peers, as defined by matrix G. However, agent 4 with a participation

(a) The network structure {N,G, Ŝ, SP}

(b) SMP network: Case 1 (c) SMP network: Case 2

Figure 1. An example.

threshold equal to 2 does not participate in the stock market in Case 1 but participates

in Case 2. To understand why the outcomes for agent 4 are different in two settings, let

us take a closer look at Case 2. In Figure 1c, agent 2 has two incoming edges. Therefore,

agent 2 participates only because she is influenced by agents 3 and 6. Agent 6, in turn,
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participates due to the influence of agent 5, while agent 5 is influenced by agent 4’s decision

to participate. This creates a loop: agent 4 participates because she anticipates that her

decision will influence agent 5, which will then influence agent 6, ultimately reinforcing agent

4’s own participation.25

Thus, Case 2 represents a scenario where a collaborative influence loop exists among

agents, allowing participation to be reinforced through mutual expectations. We aim to ex-

clude such situations from consideration. We assume that an agent will only participate and

exert influence on others if she has already received sufficient influence herself—specifically,

at least as much as her participation threshold requires. This ensures that participation is

based on actual influence rather than anticipatory cooperation. Since we do not explicitly

model the formation dynamics of the influence propagation matrix, we introduce the follow-

ing notion of a non-cooperative equilibrium. This concept formalizes our assumption and

guarantees the absence of influence loops.

Definition 2. The strategy profile σ is a non-cooperative Nash Equilibrium profile if

there exists an acyclic directed graph represented by the adjacency matrix X such that

1. xij = 1 only if gij = 1.

2. σi = 1 if and only if there exists (k̂i, l̂i) ∈ Ŝi s.t.
∑

j∈N xji ≥ k̂i+ l̂i and
∑

j∈N xjispj ≥

k̂i, and σi = 0 otherwise.

3. If σi = 1, for all j ∈ N , if gij = 1, it follows that xij + xji = 1.

4. If σi = 0, for all j ∈ N : xij = 0.

A key additional requirement in the definition of a non-cooperative equilibrium is the

existence of an acyclic directed graph, represented by the adjacency matrix X.26 In the

25Similarly, we can construct a situation with a loop going from agent 4 to agent 6, from agent 6 to agent
5, and from agent 5 back to agent 4.

26Note that the existence of an acyclic graph is required, although it may not necessarily be unique.
In contrast, we demonstrate later that the strategy profile σ is uniquely determined for a given network
structure.
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previous example, constructing a matrix X that describes an influence propagation process

without influence loops — while still allowing agents 4, 5, or 6 to participate in the stock

market and exert influence — is impossible. However, Figure 1b illustrates a non-cooperative

equilibrium in which agents 1, 2, and 3 participate. Moreover, we cannot construct any

matrix X that corresponds to the properties described in Definition 1, such that agents 1, 2,

and 3 are playing their best responses and any of them does not participate in equilibrium.

This leads us to the result introduced in Proposition 1.

Proposition 1. For any given network structure {N,G, Ŝ, SP} there exists a unique non-

cooperative equilibrium.

Proof. See Appendix D.2

The proof of the existence of a non-cooperative equilibrium is constructive. We propose

an algorithm that finds a set of participating agents (Appendix D). Notably, the uniqueness

of the equilibrium means that there is a unique set of participating agents, such that we

can construct a stock market participation influence propagation matrix X that satisfies the

properties of a non-cooperative equilibrium. However, it does not mean there is a unique

way to identify matrix X. We provide an example in Appendix D.3.

2.6 PARAMETER VALUES IN SIMULATIONS

We now describe the parameter values used in the simulations. We study how simultaneous

changes in model parameters affect stock market participation. The values of the fixed model

parameters primarily come from U.S. financial and macroeconomic data from 2014 and are

summarized in Table B3.

Fixed parameters – We perform some preliminary computations for model estimation.

We assume that the income distribution is log-logistic (Atkinson, 1975), and agents in the

model can invest their income minus a minimum wage in the stock market. We obtain
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historical data on annual stock market risk premium rm and risk free rate, rf . We set

expected risky asset return to µ = rm+ rf . We also use VIX S&P 500 index to approximate

both volatility of prior beliefs, σ2
0, and volatility of informative signals, σ2

p.
27 Moreover, we

add information about the income distribution from the U.S. Census Bureau’s 2010-2015

American Community Survey (ACS). The data contains information for the lower bound,

upper bound, and mean household income for 2010-2015. We use employment in the financial

and insurance sectors (52 NAICS) in 2015 from the Quarterly Census of Employment and

Wages as a proxy for financial education.

Connectivity and homophily – The connectivity parameter, c, controls for the

expected number of links (peers) for each agent in the population. We assume that every

agent has the same expected number of peers, independent of their other characteristics.

However, the actual number of peers varies across agents. We split all agents into five

income groups based on income distribution quintiles.

Each agent forms a link with an agent who belongs to her income group with uncon-

ditional probability pIn and an agent who does not belong to the same income group with

unconditional probability pOut. The homophily parameter, h ∈ [0, 1], controls for the dif-

ference between unconditional probabilities to form the link with agents within and outside

the agent’s income group, h = pIn − pOut. If homophily parameter h equals 0, each agent is

equally likely to form a link with any other agent inside and outside her income group. If

the homophily parameter h equals 1, each agent forms a connection only inside her income

group. It is important to note that homophily and connectivity parameters are independent.

In the baseline model for the parameter calibrations, we set the homophily parameter equal

to 0.5. This value implies that agents are more likely to connect to agents within their income

group as to agents outside their income group. Empirical evidence on segregation between

low and high-income households suggests that homophily may be even higher, especially

27IESE, Social Science Research Network, 2015 (https://www.statista.com/statistics/664840/
average-market-risk-premium-usa/).
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among high-income households (Reardon & Bischoff, 2011; Massenkoff & Wilmers, 2023).

In the calibration exercise, we will allow homophily to vary to explore how different levels of

homophily change the effect of connectivity.

All economic agents in the model belong to a social network represented by an adjacency

matrix G. To construct the network, we model the degree distribution using a log-normal dis-

tribution. While the literature suggests that social networks can typically be well-represented

by either power-law or log-normal degree distributions (Mitzenmacher, 2004), some evidence

indicates that log-normal distributions provide a better fit for a larger proportion of networks

(Broido & Clauset, 2019). This is often found in social networks where maintaining mean-

ingful connections requires at least some effort (Sheridan & Onodera, 2018). In our context,

it is relevant because the majority of individuals tend to share financial information only

with a limited number of close friends and relatives (Balakina et al., 2024; Lusardi et al.,

2010). Furthermore, the log-normal distribution allows us to align our results more closely

with the empirical evidence presented by Arrondel et al. (2022), with a power-law degree

distribution generating unrealistically large hubs.28

To construct a connectivity matrix, we first assign a number of peers to each agent fol-

lowing a log-normal distribution with an expected mean of c.29 Second, at each iteration, we

start with an agent with the number of formed links below the preassigned number of peers.

Next, we compute conditional probabilities to form additional links to other peers given the

number and the outside/inside income group nature of already formed links. We update

the conditional probabilities for each agent at each iteration such that the unconditional

probabilities to form links inside and outside the agent’s income group remain the same for

28Nonetheless, we also conducted similar analyses using both binomial degree distributions and power-law
distributions implemented through a preferential attachment mechanism adjusted for homophily. The results
remain qualitatively similar.

29We also set the shape parameter to 0.75. The literature provides different estimates based on various
types of networks, but they typically range from 0 to 1 (Smith, 2021). The choice of shape parameter
is motivated by the empirical findings of Arrondel et al. (2022), where the largest reported number of
connections through which an agent shares financial information is 100. An agent with such a large number
of connections is almost certainly participating in the stock market. Our choice of the shape parameter
allows us to generate hubs close to 100 connections.
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all agents. Previous research suggests that individuals, on average, have a maximum of 50

active connections (Arrondel et al., 2022; Mac Carrona et al., 2016). However, only a small

number of these links are used to share financial information. Arrondel et al. (2022) find,

on average, individuals have seven peers in their financial circles. We, therefore, use seven

peers as the baseline point in the simulation analysis.

Calibrated Parameters Our model includes three key parameters that we estimate

through calibration: the cost function parameters F0 and θ, as well as the proportion of non-

financially educated agents who generate informative signals, denoted as rh ≡
∑n

i (spi)/n.

To estimate these parameters, we use data on participation rates across different income

groups. We calibrate the model to match observed participation patterns using a maximum

likelihood approach.30

The estimated cost F0 is $20,400, and the estimated value of θ is $3,900. Previous

literature provides a wide range of estimates, from $260 in Vissing-Jørgensen (2002) to

$134,000 in Andersen & Nielsen (2010). Notably, past estimates of F0 do not account

for information received from peers. For instance, the lower estimate of $260 from Vissing-

Jørgensen (2002) can be reconciled with our estimate of $20,400 by assuming that individuals

obtain information from approximately 5.2 peers. Given this, we consider our estimates to

be reasonable.31

Network size and structure – Given the complexity of the calculations, we approx-

imate the population size as 10,000 agents in all simulations. Each agent is assigned an

30We use data from the Survey of Consumer Finances, provided by the Board of Governors of the Federal
Reserve System. The calibration relies on reported stock market participation rates for different income
groups in 2013 and 2016, averaging the two periods to approximate participation in the 2014 U.S. stock
market. Our estimation follows these steps: (1) we compute stock market participation in our model for the
same income groups as in the survey, varying θ in steps of 100 and rh in steps of 0.1; (2) for each combination
of θ and rh, we determine the participation cost F using a gradient descent method to ensure the model’s
average participation rate aligns with the empirical data within a ±0.03 margin; and (3) we identify the
best-fitting values for θ and rh using a maximum likelihood approach, and take the corresponding value of
F .

31It is also important to note that in estimating the cost, we do not impose any restrictions on agents’
investment strategies, allowing them to borrow and potentially take short positions. Introducing additional
constraints would significantly lower our cost estimate.
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income parameter, randomly drawn from a log-logistic distribution, as described earlier.

Additionally, each agent is randomly classified as either financially educated or not, with no

correlation assumed between education level and wealth in the benchmark model. However,

we discuss in the results section how introducing a correlation between these factors may

impact the results. Non-financially educated agents are also randomly assigned the type of

signal they will generate, using the estimated parameter rh. The adjacency matrix is formed

following the procedure described above.

The large size of the network allows us to have robust simulation results for each set of

the parameters, despite the random network structure. However, to provide a more reliable

estimates, we apply the following procedure. We begin by sampling values for the income

vector according to the specified income distribution parameters, and then we construct a

random network based on the sampled values. After determining the equilibrium outcome

for the network, we repeat the process of constructing a random network 10 times. Finally,

we report the average outcomes of these 10 iterations.

3. MODEL RESULTS

We now present the main results for the model simulations. We run simulations of the full

model, including both social utility and social learning channels, and use parameter values

described in Table B3. Overall, we consider 1,815 combinations of parameters for the main

results. Computational capacity allows us to run simulations in networks with 10,000 agents.

Given the average number of connections, we focus on a sparse network graph where agents

exist in clusters. In the model, the composition of the clusters depends on the homophily

parameter, which governs how likely agents are to connect with agents from other income

groups. Figure 2 illustrates the network structure with low homophily in panel a) and

high homophily in panel b). Various colors signify agents with different income levels. In

an economy with low homophily, panel a), there are no clear clusters of income groups.

In contrast, the economy with high homophily, in panel b), shows distinct clusters among
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(a) Low homophily

(b) High homophily

Figure 2. Network structure visualisation
Notes: The figures plot networks generated by our algorithm. For illustration purposes, we constructed networks with 1,000
agents and average number of connections of 4. Vertices of different colours represent agents of different income groups. We
set the homophily index of 0.1 for low homophily and 0.9 for high homophily.



different income groups.

We focus on how the number of connections, homophily, and ex-ante income inequality

affect the share of stock market investors, starting with the entire population. We also

explore how each parameter of interest affects different income groups. The groups coincide

with the five income groups used to construct the network.

3.1 THE EFFECT OF CONNECTIVITY

Figure 3 presents the relation between connectivity and stock market participation. The

solid orange line plots the average participation, and black, gray, blue, green, and light

purple dashed lines present participation among five income groups, starting from the lowest.

In the figure, we vary the average number of connections on the x-axis and fix all other

parameters.
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Stock market participation (%)

Figure 3. The effect of connectivity by model parameters
Notes: The figure plots stock market participation (y-axis) against the average number of connections (x-axis). The orange
solid line plots the average stock market participation among all agents. The dashed black, gray, blue, green, and light purple
lines plot average participation among income quintile groups, starting with the lowest. We set the homophily parameter to
0.5 and the ex-ante Gini coefficient to 0.4 for the simulations.

The relation is S-shaped, in particular for middle income agents (incomes between P40

and P80). The effect of adding one more peer is small for low levels of ex-ante connectivity.
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However, as the number of connections increases, the marginal effect of adding one more

peer grows. The figure also shows that not all income groups benefit equally from higher

connectivity. Intuitively, lower-income agents are further from the participation threshold

and thus need more connections to participate.

Since high-income agents are more likely to be close to the participation threshold al-

ready, connectivity positively impacts their participation. With more than five connections

on average, the effect diminishes, again giving an S-shaped pattern. With more than ten con-

nections, essentially all high-income agents participate. In contrast, middle income agents,

denoted by the green, blue and gray dashed line, need a larger number of connections be-

fore connectivity starts to have an impact. These agents are further from the participation

threshold and, thus, do not initially benefit as much from increased connectivity. However,

once connectivity reaches a sufficient level, stock market participation strongly increases. On

the right side of the graph, the gap in participation between medium and high-income agents

is small. Finally, the effect of connectivity for low-income agents is small. Low-income agents

are far from the participation threshold and thus need many peers before participating.

This first result of our model implies that we expect to see rising stock market partici-

pation from higher connectivity. Due to increasing social media usage over the last 20 years,

individuals have had ample opportunity to widen their social networks, leading to a likely

increase in social connectivity. However, stock market participation has been flat for all

income groups over the last twenty years according to data from the Survey of Consumer

Finances. A natural question is why rising connectivity has yet to lead to rising stock mar-

ket participation, as we would expect from the first model results, and, indeed, from a large

empirical literature on peer effects in financial decisions. Below, we argue that homophily

and inequality mediate the effect of connectivity, which helps explain the lack of response in

stock market participation.
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3.2 THE MEDIATING EFFECT OF HOMOPHILY AND INEQUALITY FOR

CONNECTIVITY
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Figure 4. The effect of connectivity by levels of homophily and inequality
Notes: The figure plots stock market participation against connectivity, defined as the average number of connections in the
economy. Panel a) plots the effect of connectivity on stock market participation for different levels of homophily. We use values
for the homophily parameter of 0.1 for the solid orange line, 0.5 for the dashed green line, and 0.9 for the blue dotted line. The
Gini coefficient in panel a) is set to 0.4. Panel b) plots the effect of connectivity on stock market participation for different
levels of ex-ante inequality. We use different values for the Gini coefficient: 0.25 for the solid black line, 0.4 for the dashed gray
line, and 0.6 for the blue dotted line. The homophily parameter in panel b) is set to 0.5.

We now examine how the levels of homophily and inequality affect the relationship be-

tween connectivity and stock market participation. Recall that the homophily parameter

measures how likely two agents from different income groups are to connect. Panel a) of

Figure 4 plots the connectivity and stock market participation for different levels of ho-

mophily. Homophily affects the S-shaped relation between connectivity and stock market

participation. For low levels of connectivity, high homophily leads to more efficient informa-

tion transmission from informed to uninformed agents, generating higher participation rates.

We see this by examining differences in participation for the three lines for the average num-

ber of connections below eight: the blue line with a high level of homophily is consistently

above the other lines. However, the effect flips if connectivity is high. If connectivity is above

five in panel a) in Figure 4, higher homophily results in lower stock market participation.

High homophily makes it more likely for rich agents with few connections to form a link

with another rich agent. Given that rich agents are more likely to cover participation costs,
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high homophily promotes stock market participation among them. However, at a high level

of connectivity, almost all rich agents already participate in the stock market. Thus, when

connectivity is high, there is no room for homophily to affect stock market participation.

We further discuss results for homophily in Section 3.3.

A similar pattern appears for inequality. Panel b) of Figure 4 plots the connectivity

and stock market participation for different levels of the Gini coefficient. We choose Gini

coefficients of 0.25, 0.4, and 0.6 for low, medium, and high inequality, respectively. We

keep the average income level constant in the simulations but adjust other distribution

parameters.32 As the Gini coefficient increases, more income is concentrated among high-

income households. At high levels of inequality, the effect of connectivity is muted because

many agents are far away from the participation threshold. The S-shaped pattern starts to

flatten due to information sharing being limited by a high share of agents with low income.

The relationship is instead approximately linear, with a low level of participation even in

a highly connected society. The S-shaped relationship between stock market participation

and connectivity is most pronounced for low levels of inequality. In this economy, agents

have close to equal shares of the same pie, leading to many agents being far from the

participation threshold. As connectivity increases, however, more agents can benefit from

access to information, and participation increases rapidly. We further discuss results for

inequality in Section 3.4.

3.3 THE EFFECT OF HOMOPHILY

Figure 5 shows that homophily has a small but positive impact on stock market participation

in simulations with low or medium connectivity. To see why, note that for a low level of

homophily, connectivity is independent of income. Information about the stock market is

more likely to spread to agents far from the participation threshold, who, consequently, do

32We assume that income is distributed according to a log-logistic distribution Fw (x; log[α], 1/β), where

α is a scale and β is a shape parameter. Mean Income = απ/β
sin[π/β] , β = 1/Gini.
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Figure 5. The effect of homophily on stock market participation
Notes: The figure plots stock market participation against homophily. Panel a) plots the effect of homophily on stock market
participation for different levels of connectivity. Average connectivity ranges from 1 (Low connectivity, black solid line) to 14
(High Connectivity, pink dashed line). Panel b) plots the effect of homophily on stock market participation for different income
groups. The low-income group, bottom quintile, is marked with a solid black line, the second, third, and forth quintiles are
marked with various patterns of light blue color, and the top income quintile group, high income, is marked with a dotted blue
line. Connectivity in panel b) is set to 7. The Gini coefficient in both panels is set to 0.4.

not benefit from the information. As homophily increases, information spreads to more

similar agents, allowing connectivity to have a higher marginal impact on stock market

participation. With a homophily of 1, however, agents are only connected to agents within

their income group, leading to less efficient information sharing. Information will still spread

throughout the network, but the effect is limited to specific income groups. Since only high-

income groups have enough income to cover the costs, information sharing is limited to this

group, and the participation rate for the population drops rapidly. If connectivity is high,

however, all agents are likely connected to informed peers, and homophily has less of an

impact on participation.

To illustrate who benefits from higher homophily, Panel b) plots stock market partici-

pation against homophily for five income groups with the level of connectivity set to seven

peers, the reference point from Arrondel et al. (2022). Naturally, agents for the high-income

group participate at a higher level than the low and medium-income groups. As homophily

increases, it is the high-income agents who slightly increase their stock market participation.

For low and medium-income groups, homophily has little impact on participation rates,
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while homophily is at a moderate level. However, when homophily increases, the low-income

agents are negatively affected first, followed by medium-level income agents. High levels of

homophily limit information transmission from one income group to another, thus dimin-

ishing the access of low and medium-income agents to participating peers from high-income

groups who can share the information.

In the above results, we assume that homophily is related to income and that income di-

rectly affects stock market participation. There is ample evidence that homophily is directly

related to income or wealth (e.g. Fagereng et al., 2022; McPherson et al., 2001). Figure

C1 shows that homophily does not have an effect if it is unrelated to factors that determine

stock market participation. These results suggest that rising homophily will only affect stock

market participation if sorting is based on the factors directly affecting the stock investment

decision. For example, imagine that homophily has increased based on political preferences,

but stock market participation and income are similar among different political parties. In

this scenario, the results in Figure C1 predict that the increase in homophily will not impact

aggregate stock market participation. This prediction could be tested empirically.

Finally, we explore whose homophily matters more for stock market participation. Until

now, we have assumed that the homophily parameter is constant across agents. We now want

to explore how higher level of homophily for one group, specifically high-income households,

affects average stock market participation in the economy. We find that homophily among

high-income agents has an impact on other agents in the model. Due to high homophily

high-income agents form a tight cluster, resulting in other agents not getting access to them.

We can think of this as the gated-community effect: homophily among high-income agents

affects all other agents, even if the sorting is present only in the preferences of high-income

agents. In the gated-community example, community members limit their interactions with

other agents outside the community by segregating themselves, even if the other agents

outside would like to socialize across groups.
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Figure 6 plots stock market participation among middle-income agents against homophily

level among high-income agents. A zero value on the x-axis corresponds to the scenario when

high-income agents are equally likely to connect to any other agent, inside and outside high-

income group. A value of one on the x-axis describes the case when high-income agents

only connect to other high-income agents. Disregarding the difference between the colored

bars for a moment, we see that high homophily among rich agents leads to lower stock

market participation for everyone else. When rich agents segregate themselves, they inhibit

information sharing among all other agents too.
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Figure 6. The effect of homophily among high income agents
Notes: The figure plots stock market participation depending on homophily among high- and low- and middle-income agents.
High income group includes agents from top 20 percent of earners in the income distribution. Middle income group includes
all agents with income above the 20th and below the 80th percentile of the distribution. Orange bars describe the stock
market participation with zero homophily among low and middle income agents; light-blue bars describe the environment with
homophily of 0.4 among low and middle income agents. We set ex-ante Gini coefficient to 0.4 for the simulations.

We further allow for two values of homophily for the rest of the agents, distinguished

by the color of the bars. Note that “low+middle” homophily measures the likelihood that

agents from the bottom four quintiles of income distribution connect to each other. A

value of zero indicates that low income agents are equally likely to connect to low and

middle-income agents. A value of 0.4 indicates that middle-income agents are more likely

to connect to other middle-income agents than to low-income agents. This latter scenario,
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with low+middle homophily equal to 0.4, leads to higher participation rates when high-

income agents are locked away in a gated community. If high-income agents are isolated

in the network, middle-income agents are better off if they are also locked into a gated

community.

The intuition is that higher homophily creates clusters among low- and middle-income

agents, which helps information sharing. Moving from left to right in the figure, we further

see that low homophily among the rich helps stock market participation among middle-

income agents for both bars. In a gated-community scenario, when homophily among high-

income agents is equal to one, middle-income agents will never meet with high-income agents

who have information to share, and consequently stock market participation is low. In this

scenario, it does not matter how much homophily there is in the rest of the society. The

implication is that we need to consider different measures of homophily among agents who

have information to share and that average homophily is potentially misleading. Empirically,

we need to understand homophily among the group with information to share.

3.4 THE EFFECT OF INEQUALITY

We now examine how inequality affects stock market participation. In the simulations,

we keep the average income fixed but vary other parameters of the income distribution.

Inequality has two effects on participation in the model. First, since we keep the average

income constant, inequality adjusts the share of agents who can afford to pay the fixed

participation costs ex-ante before considering the effect of informative connections. Second,

inequality also affects the probability that informed agents are connected to other agents

through homophily.

Figure 7 provides the results for different levels of connectivity. For low levels of con-

nectivity, black and gray dashed lines at the bottom of the figure, fewer agents have the

income necessary to reach participation threshold at low levels of inequality, and there is

little information sharing. As inequality increases, we take money from the poor and give it
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Figure 7. The effect of inequality on stock market participation
Notes: The figure plots stock market participation against ex-ante inequality. Panel a) plots the effect of inequality on stock
market participation for different levels of connectivity. Average connectivity ranges from 1 (Low connectivity, black solid line)
to 14 (High Connectivity, pink dashed line). Panel b) plots the effect of ex-ante inequality on stock market participation for
different income groups. The bottom quintile income group is marked with black solid line, dashed grey, blue, and green lines
correspond to average participation of the second, third, and forth quintiles, respectively. The light purple line marks the
average stock market participation of the top income quintile of agents. Connectivity in panel b) is set to 7. The homophily
coefficient in both panels is set to 0.5.

to the rich, allowing more agents to participate and spread information. As a result, stock

market participation increases. In societies with low connectivity, inequality has a positive

effect on aggregate level of stock market participation.

We see a negative relationship between ex-ante inequality and participation for high con-

nectivity. Higher inequality leads to clustering in the network and less efficient information

diffusion. Consequently, stock market participation is lower. For instance, stock market

participation is above 80 percent for simulations with high connectivity and low inequality.

The share drops to less than 40 percent for the most unequal simulation.

Inequality affects the distribution of participation thresholds across the network. The

combination of threshold heterogeneity and network structure results in uneven diffusion

of information. Richer agents, with lower participation thresholds, benefit more from their

connections and from homophily. Karampourniotis et al. (2015) explore how the shape of

threshold distributions influences informational cascades, comparing fixed and uniformly dis-

tributed thresholds. They find either model can generate relatively larger cascades, depend-
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Figure 8. The effect of Financial Education
Notes: The figure plots participation rates by income groups against the share of financially educated agents. We set the
Connectivity to 7, the homophily parameter to 0.5 and the ex-ante Gini coefficient to 0.4 for all simulations.

ing on the size of the initiator set. In our setup, the threshold distribution itself influences

the number of initiators — those wealthy enough to invest without additional connections

— who can spark the diffusion process. Nevertheless, our findings resonate with those of

Karampourniotis et al. (2015), as we similarly observe that greater inequality in partici-

pation thresholds can either amplify or limit information cascades, but primarily based on

network connectivity. Karampourniotis et al. (2019) further explore non-monotone relation

of the shape of threshold distribution and the network degree assortativity. In our analysis,

we primarily consider the impact of higher assortativity in participation thresholds driven

by homophily, which arises from clustering among agents with similar income levels.

3.5 THE EFFECT OF HIGHER FINANCIAL EDUCATION

Financial education has a strong impact on stock market participation, in particular for

low-income agents. We show this by exogenously varying the share of financially educated

agents in the model. Figure 8 plots aggregate stock market participation against the share

of financial educated agents. The effect of increasing the share is approximately linear for

39



all income groups. The slope on financial education differs across income groups, however,

and the stock market participation rates increases more for lower income groups for a given

change in financial education. Intuitively, network effects imply that lower income groups

benefit more from informed peers. With network effects, financial education targeting poorer

households is more effective at boosting stock market participation.

Thus far, we have assumed that the probability of being financially educated is uniform

across the wealth distribution. However, the literature suggests that financial sophistication

is positively associated with wealth accumulation, with wealthier households possessing spe-

cialized skills that enable them to invest more effectively and earn persistently higher returns

(Fagereng et al., 2020). To investigate the implications of this relationship, we simulate the

full model under varying degrees of correlation between wealth and financial education, rang-

ing from zero to one, across different levels of homophily. A zero correlation implies that

financially educated individuals are equally likely to be found among both poor and rich

agents, whereas a correlation of one indicates that only the wealthy have access to financial

education.
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Figure 9. The effect of Correlation between Financial education and Wealth
Notes: The figure plots participation rates at zero, 20%, 40%, 60%, 80%, and 100% correlation between financial education
and wealth against the level of homophily in the economy. We set the Connectivity to 7 peers, entry cost F to $ 20,400, the
probability of informed signal to 0.4, and the ex-ante Gini coefficient to 0.4 for all simulations.
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The results, presented in Figure 9, show that when homophily is below 0.4, the correla-

tion between financial education and wealth has a negligible effect on average stock market

participation. However, as the level of homophily increases, the impact becomes more pro-

nounced. For example, at a homophily level of 0.8, increasing the correlation from zero to

one results in a decline in average stock market participation of more than 10 percentage

points, from 35 percent to below 25 percent.

Figures 8 and 9 demonstrate that policies to improve financial education targeted towards

low-income individuals would be especially effective in high-homophily economies.

4. THE IMPLICATIONS OF SOCIAL UTILITY AND SOCIAL

LEARNING

In section 3 we present the results for the baseline model with both social utility and social

learning channel in place. We now seek to understand the implication of different channels of

social influence. Recall that the social utility channel affects the fixed costs of participation

and that social learning affects the beliefs about returns. Empirical evidence suggests that

both these factors are relevant for households decision making (Bursztyn et al., 2014).

To compare the consequences of two channels in isolation, we simulate the model by

”turning off” one of the channels at the time. To simulate the model with only social

utility channel as active, we fix probability of Non-Financially Educated agents to spread

informative signal to zero, rh = 0. To isolate the effect of social learning, we simulate another

version of the model with marginal benefit of having an informed peer set to zero, θ = 0. The

remaining parameter values are estimated in the model to match the average stock market

participation.33

Figure 10 plots average and income-group specific stock market participation levels for

simulation with only social utility (blue), only social learning (green), and both channels

33Running the simulations of the new versions of the model inevitably includes the re-estimation of the
ex-ante value of participation cost, F . The resulting estimates remain in the range proposed by the literature.
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Figure 10. Distributional impact of Social Utility and Social Learning
Notes: The figure plots stock market participation for different income groups and different simulations for the best-fit models,
based on ML estimation. The empirical stock market participation rates by income from the Survey of Consumer Finances are
denoted by black bars. The gray bars provides the results from the baseline model, the blue bars provides the results from the
model with only social utility, and the green bars provide the results for the model with only social learning. The results are
split by income quintiles. We set the Connectivity to 7, the homophily parameter to 0.5 and the ex-ante Gini coefficient to 0.4
for all simulations.

(gray) against actual levels (black). We find that, while it is always possible to choose

parameter values to match aggregate participation level, only the model with social utility

provides a reasonably good fit to the actual stock market participation rates by income

quintiles. Including social utility allows us to correctly match the participation among both

low and high income agents. In contrast, the model with social learning predicts very low

participation among the bottom 40 percent, which is compensated by very high participation

rates in the 80th percentile.34 Intuitively, social utility affects the fixed cost of participation,

which is especially crucial for poorer agents. Social learning affects the expected return,

which is less important for poorer agents. Even if the expected return is high for poor

agents, a fixed participation cost will deter their entry into the stock market. Overall, we

find that social learning, given that it affects the expected return on investing, does not

allow us to match the empirical patterns of participation. These results are consistent with

34Simulations with only social learning channel reinforce the stock market participation puzzle, with
actual stock market participation among wealthy being too low and participation and among poor - too high
compare to model predictions.
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recent research on the stock market participation puzzle (Duraj et al., 2024), which highlights

that individuals helps overcome fixed participation costs with the help of family, friends, or

financial advisors they trust.

For the effect of homophily, under social-learning model low-income agents do not par-

ticipate, as a result homophily has a very limited effect. Figure C2 in the appendix show

that social utility creates a strong effect of homophily, whereas social learning fails to gen-

erate much effect and can actually help to boost overall stock market participation through

wealthier agents (P60). This occurs because wealthier agents benefit from having fewer

connections with low-income (non-participating) agents and more connections with other

wealthier agents who are more likely to participate and, therefore, generate informative

signals.

As shown in Bursztyn et al. (2014), both channels are present in social influence. Thus

to understand better the overall effect of social influence we need to investigate the combined

effect of social utility and social learning channels on stock market participation, particularly

when both channels are present and reinforce each other. To do this, in the model with, with

both channels present we create two new datasets. In the first dataset, we run simulations

while varying the parameter θ in increments of 100 within the interval [2900, 4800], while ad-

justing the homophily parameter within the set [0, 0.2, 0.4, 0.6, 0.8, 0.95]. We simultaneously

keep the learning parameter, rh,constant at the calibrated value. In the second dataset, we

fix θ at the calibrated level, and vary rh in steps of 0.05 within the interval [0, 1], and adjust

homophily as before. The first and second datasets allow us to measure the sentitivity of

the stock market participation level to increasing the impact of the social utility and social

learning channels, respectively.

Using the generated data, we compute the elasticities of aggregate and income-group

specific stock market participation levels to changes in θ and rh at every level of homophily

from simulations. Let Pj,i denote stock market participation in group j, where j represents
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one of the five income quintiles, for a given value of the factor factori. We then compute

the elasticity as:

εj,i =
Pj,i+1 − Pj,i

factori+1 − factori
× factori+1 + factori

Pj,i+1 + Pj,i

.

Next, we calculate the average elasticity across all observations for each group:

ε̄j =
1

m− 1

m−1∑
i=1

εj,i,

where m is the number of different levels for the corresponding factor.

In the final step, to facilitate comparisons across income groups, we normalize estimated

income-group elasticities by dividing them on the average elasticity across groups:

ε̃j =
ε̄j∑5
j=1 ε̄j

.

ε̃j > 1 indicates that income group j is more responsive to changes in the corresponding

factor than the average group. Conversely, ε̃j < 1 suggests that the income group j is

less responsive than the average. Figure 11 illustrates the results for relative elasticities

across different levels of homophily for both factors, θ (representing social utility) and rh

(representing the social learning channel).

We observe that at lower levels of homophily, low-income groups benefit more when the

social utility is more impactful. Increasing importance of social learning, however, benefits

more medium- and high-medium income groups. The highest-income group experiences the

smallest benefit overall in both scenarios, primarily due to the wealthiest agents already

participating, regardless of their connections. For medium levels of homophily, low-income

groups benefit the most from both channels. However, this is likely driven by spillover effects,
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Figure 11. The relative elasticities for SMP across income groups
Notes: The figure plots the relative elasticities for stock market participation across different income groups with respect to
θ and rh at various levels of homophily. We set the ex-ante Gini coefficient to 0.4, the average connectivity to 7, θ to 3900 for
the dataset where rh varies, and rh to 0.4 for the dataset where θ varies.

where the social utility channel amplifies the benefits for low-income groups. Essentially,

the direct effect of higher informativeness primarily impacts higher-income groups, but as

more individuals from high-income groups begin to participate, they also spread more social

utility to other income groups. Finally, At very high levels of homophily, it is primarily the

medium-high income group that benefits fully from social learning and utility.

Including and analysing different channels for social influence shows that both channels

are important with social learning alone not enough to explain the actual levels of stock

market paticipation. In addition, our findings demonstrate that low-income groups benefit

the most from social utility, especially at below high levels of homophily.

5. EMPIRICAL EVIDENCE

A key idea in the model is that if a particular group has no stock market participant who

can share information, then their degree of connectivity will not matter. We now show

that a general social connectivity measure, SCI, does not predict cross-sectional variation

in stock market participation in U.S. counties (Bailey et al., 2018). However, stock market

participation strongly correlates with Economic Connectedness, a measure that conveys more
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information about the connectivity between individuals with a high- and low socioeconomic

status (Chetty et al., 2022a).

We combine several county-level datasets to examine the correlation between connec-

tivity and stock market participation. Below, we describe the main sources and variables

of interest. We first collect county-level data on connectivity, the Social Connectedness In-

dex (SCI) from Facebook Bailey et al. (2018). The SCI measures the social Connectedness

between and within U.S. county pairs. This index measures the relative probability of a

Facebook friendship link between Facebook users in two different or within one county. We

augment this connectivity data with data on economic Connectedness from Chetty et al.

(2022a,b). Economic Connectedness is defined as two times the share of high socioeconomic

status (SES) friends among low-SES individuals, averaged over all low-SES individuals in

the county. Considering that high-income agents are more likely to invest in stocks and have

information to share about the stock market, Economic Connectedness captures the idea

that low-information agents need access to high-information agents to benefit. Finally, we

calculate the county-level participation share as the fraction of tax returns claiming ordinary

dividends. Hung (2021) provides a detailed validation of the measure. Details on other data

sources and definitions are available in Appendix A, descriptive statistics are available in

Table B1, and correlations between select variables are available in Table B2.

We examine the relationship between stock market participation and social connectivity

in Figure 12. The figure reports scatter plots between connectivity measures and stock mar-

ket participation. Panel a) plots the average SCI against stock market participation on the

county level. The relationship between the logarithm of within-county connectivity from the

SCI and stock market participation is positive and significant. However, SCI only explains 2

percent of the variation in stock market participation, and the relationship is not generally ro-

bust to adding control variables or to different transformations. Instead, panel b) shows that

the correlation between Economic Connectedness and stock market participation is about
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Figure 12. Stock market participation and different measures of Connectivity
Notes: Both figures plot stock market participation on the county level on the y-axis. Panel a) plots Log Connectivity on
the x-axis, where Connectivity is proxied by the within-county Social Connectedness Index from Facebook. Panel b) plots
Log Economic Connectedness on the x-axis. We remove counties in the 99th percentile of Connectivity. We report results
regressions of the form SMP = α+ βX + ϵc, where X is either Log SCI or Log Economics Connectedness, and where we use
robust standard errors.

four times higher than that between SCI and stock market participation. A one standard

deviation increase in Economic Connectedness is associated with a 0.66 standard deviation

increase in stock market participation.35 Moreover, Economic Connectedness explains 42

percent of the variation in stock market participation in a univariate regression.

We present regression results using the same data in Table 1. The estimated effect

of Economic Connectedness is positive as well as statistically and economically significant

even after we add control variables, state fixed effect, and primary industry of employment

fixed effects in Column 1. The coefficient on the SCI index in Columns 2 is also positive

and significant, but the economic significance is somewhat lower: a one standard deviation

increase in the SCI index is associated with a 0.12 standard deviation increase in stock market

participation. Columns 3 provide results where we include both Economic Connectedness

and SCI. Both variables are now statistically significant and positive across specifications.

We interpret these results in the following way. Holding Economic Connectedness fixed,

35Following Mitton (2022), we define economic significance as E = βsx/sy, where β is the coefficient of
interest, sx adn sy denotes the standard deviation of the independent variable x and dependent variable y,
respectively.
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Table 1. Social Connectivity and Stock market participation

Within-county Non-local peers

(1) (2) (3) (4) (5) (6) (7)

Log economic connectedness 0.0502*** 0.0575***
(0.0080) (0.0087)

Log connectivity 0.00413***0.00551***
(0.0011) (0.0011)

Log economic connectedness, non-local peers 0.284*** 0.181*
(0.061) (0.10)

SMP of peers, non-local peers 1.050*** 0.559
(0.23) (0.39)

Financial education of peers, non-local peers 0.929 0.404
(0.62) (0.72)

Controls Yes Yes Yes Yes Yes Yes Yes

State FE Yes Yes Yes Yes Yes Yes Yes

Industry FE Yes Yes Yes Yes Yes Yes Yes
Mean Dep. Var. 0.14 0.14 0.14 0.14 0.14 0.14 0.14
Std. Dev. Dep. Var 0.06 0.06 0.06 0.06 0.06 0.06 0.06
Economic significance 0.19 0.12 0.22/0.17 0.19 0.17 0.00 –
Observations 2949 2949 2949 2949 2949 2949 2949
R-squared 0.813 0.808 0.818 0.810 0.810 0.805 0.811

Notes: The table provides results where we regress stock market participation at the county level against connectivity
measures and controls. Control variables include county-level age, age squared, median household income, the share of
financially educated, the county’s share of a bachelor-level education or above, county population, per capita number of
schools in the county, dummy indicator for metropolitan areas, and the ratio of the mean income for the top 20% of earners
divided by the mean income of the bottom 20% of earners in a county. in Fixed effects for the state and main industry of
employment for the county are indicated. Economic significance is equal to βsx/sy , where beta is the coefficient of interest,
s denotes the standard deviation of the independent variable x and dependent variable y. We cluster standard errors by
state. *** p < 0.01, ** p < 0.05, * p < 0.1.

higher SCI positively impacts stock market participation. If we fix the information content

in the county by holding the Economic Connectedness constant, having more connections will

help spread information. These results show that it is important to connect to individuals

with information to share.

An empirical concern with the results is that there exists a variable correlated with both

Economic Connectedness and stock market participation within the county. To partially

address this concern, we instead examine the economic connectedness of non-local friends.

We use the Facebook connectivity data to measure the connectivity of each county with all

others counties in the United States, and calculate the weighted average of economic con-

nectedness and financial education among non-local peers, similar to Cannon et al. (2024).

We only select counties more than 250 miles away, to detach the measure from local economic

48



conditions. The results are presented in Columns 4-6. First, economic connnectedness of

non-local peers has a large impact on local stock market participation. The estimated eco-

nomic significance (which takes the differences in variation between local and peer economic

connectedness into account) is identical in Columns 1 and 4. We also examine two other

variables that our model predicts should mediate the effect of connectivity. First, we add the

stock market participation rate of non-local counties, which has a large and positive effect

on partipation rates. In terms of economic significance, the impact is similar to Economic

Connectedness. In column 3, we examine the effect of financial education in peer counties,

showing that this has next to no relationship to stock market participation. While this may

appear puzzling, we note that the correlations between Economic Connectedness and Finan-

cial education in peer counties has a correlation of 0.03 in the data. While some counties

have a high share of financially educated households, they are not counties where rich and

poor tend to interact. Finally, we show that only Economic Connectedness is significant if

we include all variables in one regression, albeit only at 10% level.

Finally, we analyze the effects of economic connectedness and financial education across

counties, stratified by income level. Our model predicts that connectivity positively influ-

ences stock market participation. When this effect operates primarily through the social

utility channel, which lowers the fixed cost of participation, it should be important across all

income groups. In contrast, the social learning channel, which affects the perceived return

to participation, implies that information is most valuable to high-income households. With

respect to financial education, the model predicts the largest benefits for the low-income

group with both channels at play.

To test these predictions, we divide the sample of counties into three equally sized groups

based on average county income. We first estimate the effect of economic connectedness with

non-local peer counties on stock market participation within each income group. As shown

in Figure C3, panel (a), the magnitude of the effect is similar across income groups. That
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is, stock market participation in peer counties has a positive and comparable effect across

all three income groups. This finding is consistent with the idea that peer effects influence

participation costs, which we attribute to social utility in the model. Cannon et al. (2024)

report similar results for the within-county effect of Economic Connectivity, showing that

Economic Connectedness has a positive impact on stock market participation among low-SES

households.

Figure C3, panel (b), further shows that financial education in peer counties is generally

positively associated with stock market participation, but the effect is significantly stronger

in lower-income counties. This pattern supports the model’s prediction that financial edu-

cation plays a particularly important role in lowering participation barriers for lower-income

households.

5.1 ROBUSTNESS

We now examine several plausible explanations for the correlation between Economic Con-

nectedness and stock market participation. While we can plausibly rule out some channels,

others are inherently more difficult to examine, and we stress again that it is difficult to

establish causality. With this caveat in mind, it is reassuring that we find similar results to

Cannon et al. (2024), who also study the link between Economic Connectedness and stock

market participation. They use a quasi-experimental approach based on non-local friends’

income changes to argue for a causal relationship. Cannon et al. (2024) also find that inter-

actions with high-SES individuals facilitate stock market participation, consistent with our

theoretical model.

Reverse causality – A plausible explanation for the correlation between Economic

Connectedness and stock market participation is reverse causality, where stock market par-

ticipation may lead to the formation of connections between individuals. For example, this

effect could arise if greater stock market participation leads to interactions at shareholder

meetings due to ownership in local stocks. However, we can rule out this concern by ex-
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amining childhood Economic Connectedness. Since the childhood links are formed before

the household starts investing, there should be no issue of reverse causality. The results are

presented in Appendix Table B4, where we show that the coefficients on Childhood Eco-

nomic Connectedness are similar in magnitude and economic significance to our main results

in Table 1. Note that there can still be issues related to omitted variables, which could

affect the participation rates of both parents and children in a given county. For example,

parents connection could shape their children’s connections through school choice, and could

be correlated with an omitted variable.

Causal effects of place versus selection – A second empirical concern is selection

into areas or residential sorting. Simply put, families living in areas with high Economic

Connectedness may have higher stock market participation for some inherent reason, such

as financial literacy or wealth, and not because of Economic Connectedness per se.

As noted by Chetty et al. (2022a), segregation by race or ethnicity is a prominent source

of residential sorting in the United States. Areas with a larger share of the black population

tend to have lower Economic Connectedness (Chetty et al., 2022a). Data from the Survey

of Consumer Finances also reveal that Black Americans are less likely to invest in stocks

(Derenoncourt et al., 2023). A simple way to assess whether residential sorting by race

drives the correlation between stock market participation and Economic Connectedness is to

condition the analysis on racial composition in counties. We provide such a test in Appendix

Table B5, where we split the sample into counties with below or above median share of

different ethnicities. The coefficients are somewhat lower in areas with above median Black,

Hispanic, and Asian shares but remain statistically and economically significant.

The ideal experiment for ruling out selection would be to randomly allocate individuals

across neighborhoods with low and high Economic Connectedness and examine their stock

market participation later. This strategy is reminiscent of Haliassos et al. (2020), who use

random allocation of immigrants in Sweden, and find strong effect of exposure to financially
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literate neighbors on financial behavior. In principle, a similar empirical strategy could be

used to study selection versus the causal effect of place. We lack the data to do so, but note

that the results in Haliassos et al. (2020) are consistent with our theoretical model – access

to more informed peer raises stock market participation only for educated households, who

are arguably closer to the participation threshold.

Connectedness versus other factors – Higher Economic Connectedness could also

be associated with higher stock market participation because of other factors. For instance,

areas with higher Economic Connectedness could have better school or schools that teach

financial literacy. It is reassuring that the estimates on Economic Connnectedness are robust

to controls for various variables that explain stock market participation, like income, the

share of individuals working in the financial sector, the share of households with a bachelor

degree, and age. Cannon et al. (2024) find that Economic Connectedness is a stronger

predictor of stock market participation than cultural values such as cohesiveness or civic

engagement. Added to this, we find that Economic Connectedness is more important than

general sociability, as measured by the SCI. Furthermore, Cannon et al. (2024) find that non-

local income shocks derived from friendship links affect stock market participation. These

income shocks help address concerns over other factors as they are based on social links based

on county-connectivity pairs (Bailey et al., 2018), instead of local economic conditions.

6. CONCLUSION

We present a parsimonious theoretical model of stock market participation to argue that the

effect of increased connectivity depends heavily on the network structure. We provide evi-

dence that economic connectedness strongly correlates with stock market participation in the

cross-section of U.S. counties, but social connectivity has little predictive power. Informed

by this evidence, we show that connectivity leads to increased stock market participation

but that the effect depends on homophily and ex-ante inequality. We also show that higher-

income agents are more likely to benefit from higher connectivity. The model suggests a new,
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previously unexplored avenue for future research: what is the distribution of financially in-

formed peers in society, and how has this changed over the last twenty years? Can increased

homophily explain why participation has not increased in twenty years?

The main idea in this paper is that increasing tendencies to associate only with others

similar to us will leave some people without access to good sources of information within their

networks, with detrimental effects on their financial situation, their wealth accumulation,

and, in the end, for society. Policymakers should be aware of these negative side-effects

of increased homophily, and may wish to consider targeted interventions in groups without

access to informed peers.
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Kempe, David, Kleinberg, Jon, & Tardos, Éva. 2003. Maximizing the spread of influence

through a social network. Pages 137–146 of: Proceedings of the ninth ACM SIGKDD

international conference on Knowledge discovery and data mining.
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INTERNET APPENDIX

FOR ONLINE PUBLICATION

A. DATA SOURCES AND DESCRIPTION

We use detailed USA county-level data for income, financial employment, stock market

participation, and social connectivity. First, we collect data for the average within-county

connectivity levels. Specifically, we use the Social Connectedness Index (SCI) from Bailey

et al. (2018), where authors construct a measure of social connectedness between US county-

pairs. This measure is constructed as an index based on the number of friendship links

on Facebook36, where the average number of links is normalized to the largest number of

connections for a Los Angeles County - Los Angeles County pair.37

We obtain stock market participation rates from the Internal Revenue Service’s (IRS)

Statement of Income (SOI) for individual income tax return (Form 1040) statistics following

the procedure described in Bäckman & Hanspal (2022), where the fraction of tax returns

claiming ordinary dividends are used as an indication of stock market participation within

the county. See also Chien et al. (2017), who uses the same data to calculate state-level

participation, and Hung (2021), who calculates county-level participation and provides a

detailed validation of the measure. We add information about the income distribution in

each county from the US Census Bureau’s 2010-2015 American Community Survey (ACS).38

We use employment in Finance and Insurance Sector (52 NAICS) in 2015 from the Quarterly

Census of Employment and Wages as a proxy for financial education.

36Duggan et al. (2015) report that as of September 2014, more than 58 percent of the US adult population
and 71 percent of the US online population used Facebook. The same source reports that, among online
US adults, Facebook usage rates are relatively constant across income groups, education groups, and racial
groups.

37The SCI for Los Angeles County - Los Angeles county is equal to 1,000,000
38The data contains information for the lower bound, upper bound, and mean household income. We

assume that the income distribution for different counties in the US is log-logistic (Atkinson, 1975). This
assumption is consistent with the income distribution that we observe in the data.
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B. TABLES

Table B1. Descriptive statistics

Mean Median Std. dev. Min Max

Stock Market Participation 0.140 0.137 0.061 0.000 0.447
Connectivity measures
Economic connectedness 0.812 0.806 0.176 0.295 1.360
Log economic connectedness -0.233 -0.216 0.227 -1.222 0.307
Ec. Connectedness - high SES among low SES 0.848 0.839 0.213 0.187 1.476
Ec. Connectedness - high SES among high SES 1.252 1.257 0.177 0.701 1.715
Friendship exposure 0.904 0.902 0.212 0.270 1.486
Friending bias 0.064 0.064 0.050 -0.108 0.335
Friendship clustering 0.116 0.115 0.020 0.072 0.222
Inside Connectivity index 8,539.620 1,693.562 33,669.911 3.162 1000000.000
Log connectivity 7.415 7.435 1.805 1.151 13.816
Inside Connectivity index per capita 0.066 0.060 0.034 0.001 0.241
Demographics
Median Age, county 41.300 41.300 5.268 23.200 66.600
Log Median Household Income 10.663 10.654 0.240 9.870 11.658
Financial Employment 0.013 0.011 0.011 0.000 0.224
Share of African Americans 0.084 0.008 0.147 0.000 0.861
Share of Women 0.501 0.505 0.022 0.304 0.575
Share of Hispanic Americans 0.070 0.020 0.132 0.000 0.983
Metropolitan Area 0.370 0.000 0.483 0.000 1.000
Schools per capita 0.001 0.000 0.001 0.000 0.007
Income Inequality 13.043 12.409 3.325 6.065 47.101
County Population, in 1000s 97.794 26.087 312.754 0.489 9,758.256

Notes: Economic connectedness is two times the share of high-SES friends among low-SES individuals, averaged
over all low-SES individuals in the county. Friendship exposure is the mean exposure to high-SES individuals
by county for low-SES individuals. Friendship clustering is the average fraction of an individual’s friend pairs
who are also friends with each other.
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Table B2. Correlation table

SMP Log EC Log Con Age Inc. Fin.Ed Black Female Hisp. Asian share Schools p.c. Ineq. Pop

SMP 1
Log EC 0.650*** 1
Log Con 0.150*** -0.178*** 1
Age 0.218*** 0.151*** -0.456*** 1
Inc. 0.630*** 0.586*** 0.293*** -0.120*** 1
Fin.Ed 0.409*** 0.223*** 0.370*** -0.187*** 0.318*** 1
Black -0.326*** -0.586*** 0.201*** -0.180***-0.269***-0.0245 1
Female 0.111*** -0.0524** 0.289*** 0.0125 0.0108 0.148*** 0.105*** 1
Hisp. -0.163*** -0.190*** 0.153*** -0.339***0.0540** 0.0545** -0.102*** -0.130*** 1
Asian share 0.297*** 0.139*** 0.482*** -0.259*** 0.423*** 0.350*** 0.0477** 0.0906*** 0.181*** 1
Schools p.c. 0.0409* 0.260*** -0.611*** 0.249*** -0.125***-0.0869***-0.236*** -0.138*** -0.0462* -0.187*** 1
Ineq. -0.177*** -0.402*** 0.222*** -0.239***-0.305*** 0.166*** 0.435*** 0.104*** 0.0975*** 0.170*** -0.106*** 1
Pop 0.151*** 0.00740 0.498*** -0.178*** 0.260*** 0.309*** 0.0788*** 0.107*** 0.208*** 0.564*** -0.164*** 0.159*** 1

Notes: The table displays pairwise correlations between variables. Variable abbrevation are as follows. SMP = Stock market participation. Log EC
= Log Economic Connectedness. Log Con = Log Inside Connectivity. Age = median age in the county. Inc. = Log median household income in
the county. Fin.Ed = the share of financially educated households. Black, Female, Hisp, and Asian denotes the share of the county population that
belongs to each ethnicity. Schools pc = schools per county population. Pop. = county population. *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table B3. Model Parameters

Description Parameter Benchmark Value Range

Wealth distribution F (Wi) Log-logistic(α, β)
Relative risk aversion γ 2
Risk-free rate rf 0.025
Average return on the risky asset µ 0.08
Expected volatility of the return (based on VIX) σ2

0 0.032
Informative signal precision (based on VIX) 1/σ2

p 1/0.032
Size of economy n 10, 000
Share financially educated 1.2%
Gini coefficient 0.4 [0.15, ..., 0.65]
Average income 41, 905
Minimum wage $15, 120
Homophily parameter h 0.5 [0, ..., 0.95]
Average connectivity c 7 [0, ..., 14]

Notes: We choose the log-logistic wealth distribution because it is consistent with the data we use for the analysis. γ is the relative
risk aversion coefficient. The disposable income which an agent can invest in the stock market is equal her labor income minus
minimal cost of living, approximated by minimum wage. The minimum wage rate corresponds to the minimum wage per hour of $
7.5 multiplied by 8 working hours per day multiplied by 252 working days based on 2014 data.
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Table B4. Childhood Economic Connectedness and stock market participation

Economic connectedness Connectivity index Combined

(1) (2) (3) (4) (5) (6)

Log child economic connectedness 0.124*** 0.0357*** 0.122*** 0.0358***
(0.010) (0.0064) (0.011) (0.0065)

Log connectivity 0.00594*** 0.00259* 0.00181 0.00261**
(0.0019) (0.0013) (0.0014) (0.0012)

Controls No Yes No Yes No Yes

State FE No Yes No Yes No Yes

Industry FE No Yes No Yes No Yes
Mean Dep. Var. 0.14 0.14 0.14 0.14 0.14 0.14
Std. Dev. Dep. Var 0.06 0.06 0.06 0.06 0.06 0.06
Economic significance 0.60 0.17 0.03 0.01 0.59 / 0.01 0.17 / 0.01
Observations 2671 2671 2671 2671 2671 2671
R-squared 0.358 0.824 0.023 0.820 0.360 0.825

Notes: The table provides results where we regress stock market participation at the county level against connectivity
measures and controls. Control variables include county-level age, age squared, median household income, the share of
financially educated, and the county’s share of a bachelor-level education or above. Fixed effects for the state and main
industry of employment for the county are indicated. Economic significance is equal to βsx/sy , where β is the coefficient
of interest, s denotes the standard deviation of the independent variable x and dependent variable y. We cluster standard
errors by state. *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table B5. Social Connectivity and Stock market participation by race and
ethnicity

White
Share

Black
share

Asian
share

Hispanic
share

(1) (2) (3) (4) (5) (6) (7) (8)
Above Below Above Below Above Below Above Below

Log economic connectedness 0.0741*** 0.0330*** 0.0303*** 0.0728*** 0.0357*** 0.0507*** 0.0399*** 0.0623***
(0.016) (0.0091) (0.0095) (0.013) (0.011) (0.011) (0.0091) (0.012)

Controls Yes Yes Yes Yes Yes Yes Yes Yes

State FE Yes Yes Yes Yes Yes Yes Yes Yes

Industry FE Yes Yes Yes Yes Yes Yes Yes Yes
Mean Dep. Var. 0.14 0.14 0.14 0.14 0.14 0.14
Std. Dev. Dep. Var 0.06 0.06 0.06 0.06 0.06 0.06
Economic significance 0.28 0.13 0.12 0.28 0.14 0.19 0.15 0.24
Observations 1463 1482 1499 1441 702 2243 1504 1442
R-squared 0.762 0.859 0.886 0.753 0.901 0.785 0.856 0.805

Notes: The table provides results where we regress stock market participation at the county level against connectivity
measures and controls depending on the racial composition of the county. Column ”Above” describes the results for counties
with above-median shares of White, Black, Asian, and Hispanic residents. Column ”Below” describes the results for counties
with below-median shares of White, Black, Asian, and Hispanic residents. Control variables include county-level age, age
squared, median household income, the share of financially educated, and the county’s share of a bachelor-level education
or above. Fixed effects for the state and main industry of employment for the county are indicated. Economic significance
is equal to βsx/sy , where beta is the coefficient of interest, s denotes the standard deviation of the independent variable x
and dependent variable y. We cluster standard errors by state. *** p < 0.01, ** p < 0.05, * p < 0.1.
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C. FIGURES
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Figure C1. The effect of connectivity when homophily is unrelated to income
Notes: The figure plots stock market participation against connectivity. The ex-ante Gini coefficient is set to our baseline
value of 0.4. Homophily is set to 0.1 for Low homophily (solid orange line) to 0.5 for Medium homophily (dashed green line)
and to 0.9 for High homophily (dotted blue line).
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Figure C2. The effect of homophily on stock market participation with social
utility and social learning
Notes: The figure plots stock market participation against homophily in the model with only Social Learning and the model
with only Social Utility. Connectivity is set to 7 and the Gini coefficient is set to 0.4 in both models.
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(a) Economic Connectedness
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Figure C3. Effect of Economic Connectedness of peers across income groups
Notes: The figure plots the coefficient on non-local Financial Education by county income groups. We use the median county
income level to assign each county to one of three groups, and interact Financial Education of non-local peers with the three
income groups. The regressions control for the same variables as in Table 1, along with a dummies for each income group.
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D. APPENDIX: SOLUTIONS AND PROOFS

D.1 INDIVIDUAL INVESTOR PROBLEM

Deriving Optimal Portfolio Composition Let’s rewrite the expected utility maxi-

mization problem conditional on entry as follows:

max
αi

E

[
W 1−γ

1,i

1− γ

∣∣∣∣Ii

]
,

where W1,i = (W0,i − Fi)e
rp .

Then,

E

[
((W0,i − Fi)e

rp)1−γ

1− γ

∣∣∣Ii

]
=

(W0,i − Fi)
1−γ

1− γ
E[erp(1−γ)|Ii] =

=
(W0,i − Fi)

1−γ

1− γ
E[e(rf+αi(ra−rf )+

1
2
αi(1−αi)σ

2)(1−γ)|Ii] =

=
(W0,i − Fi)

1−γ

1− γ
e(rf (1−αi)+

1
2
αi(1−αi)σ

2
post,i)(1−γ)E[eαira(1−γ)|Ii] =

=
(W0,i − Fi)

1−γ

1− γ
e(rf (1−αi)+

1
2
αi(1−αi)σ

2
post,i)(1−γ)e(1−γ)αiµpost,i+

1
2
(1−γ)2α2

i σ
2
posti

The expected utility maximization problem is now equivalent to

max
αi

(
rf (1− αi) +

1

2
αi(1− αi)σ

2
post,i

)
(1− γ) + (1− γ)αiµpost,i +

1

2
(1− γ)2α2

iσ
2
posti

.

F.O.C.s:

−rf +
1

2
σ2
post,i − αiσ

2
posti

+ µpost,i + (1− γ)αiσ
2
post,i = 0⇒

α∗
i =

µpost,i − rf +
1
2
σ2
post,i

γσ2
post,i
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Deriving the Distribution of the Posterior Mean We can compute σ2
µ using the law

of total variance.

V ar(µpost,i) = E[V ar(µpost,i | Ii)] + V ar (E[µpost,i | ra]) ,

where

V ar(µpost,i | Ii) = σ2
post,i ⇒ E[V ar(µpost,i | Ii)] = σ2

post,i.

E[µpost,i | ra] = E

 µ
σ2
0
+

∑ki
i=1 si
σ2
p

1
σ2
0
+ ki

σ2
p
+

∣∣∣ra
 =

µ
σ2
0
+ ra

(
ki
σ2
p

)
1
σ2
0
+ ki

σ2
p

,

therefore, we can rewrite E[µpost,i | ra] as follows

E[µpost,i | ra] = ra

(
ki
σ2
p

)
σ2
post,i︸ ︷︷ ︸

≡A

+
µ

σ2
0

σ2
post,i︸ ︷︷ ︸

≡B

Then,

V ar (E[µpost,i | ra]) = V ar(Ara +B) = A2V ar(ra) = A2σ2
0.

Summarizing the results,

σ2
µ,i = V ar(µpost,i) = σ2

post,i + σ2
0(σ

2
post,i)

2

(
ki
σ2
p

)2

Expected Utility at the Entry Stage We compute the expected utility of agent i,

conditional on market entry but before receiving any signals, as follows
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E

[
W 1−γ

1,i

1− γ

∣∣∣ki ≥ 1, li, ti,W0,i

]
= E

(W0,i − Fi)
1−γ

1− γ
e

(1−γ)

(
4σ2

post,i(µpost,i+(2γ−1)rf)+4(rf−µpost,i)
2+(σ2

post,i)
2
)

8γσ2
post,i

 =

=
(W0,i − Fi)

1−γ

1− γ

e

(1−γ)

(
(2µ+σ2

post,i)
2
+4r2f−4rf((1−2γ)σ2

post,i+2µ)+8(γ−1)rf σ2
µ,i

)
8(γ−1)σ2

µ,i
+8γσ2

post,i√
σ2
µ,i

√
γ−1

γσ2
post,i

+ 1
σ2
µ,i

(10)

Notice that this expression is true only if ki ≥ 1. If the agent doesn’t expect to receive

any additional signal, then her posterior is simply equivalent to her prior µpost,i = µ. The

posterior variance σ2
post,i is simply the variance of the prior σ2

0. In this case we can compute

the expected utility conditional on not expecting to receive any signal as

E

[
W 1−γ

1,i

1− γ

∣∣∣ki = 0, li, ti,W0,i

]
=

(W0,i − Fi)
1−γ

1− γ
e

(1−γ)

(
4σ2

0(µ+(2γ−1)rf)+4(rf−µ)2+(σ2
0)

2
)

8γσ2
0

Properties of the Participation Threshold Set Here we discuss properties of the

Participation Threshold Set.

First, we show that for any agent i with W0,i > 0 and type ti, the set is non-empty.

If ti = 1, meaning agent i is financially educated, then by definition, her Participation

Threshold Set is Ŝi = {(0, 0)}.

Now, consider ti = 1 and suppose fi(W0,i, ti = 1, (0, 0)) < 0. Consider the sequence

{(ki, 0)}ki∈N. Since fi is monotonically increasing in ki and limki→∞ σ2
post,i = 0, for any

positive θ and signal precision σ2
p, we can always find k̃i large enough such that fi(Wi, ti =

1, (k̃i, 0)) > 0. Therefore, there exists k̂i such that:

fi(W0,i, ti = 1, (k̂i, 0)) ≥ 0, and fi(W0,i, ti = 1, (k̂i − 1, 0)) < 0.
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Thus, Ŝi contains at least one element (k̂i, 0), and, therefore, it is not empty.

Next, we show that for any two elements (k̂i, l̂i), (k̂
′
i, l̂

′
i) ∈ Ŝi, it must hold that either

k̂i > k̂′
i and l̂i < l̂′i, or k̂i < k̂′

i and l̂i > l̂′i.

Towards contradiction, suppose that there exist (ki, li), (k
′
i, l

′
i) ∈ Ŝi such that ki > k′

i but

li ≥ l′i. By the definition of Ŝi, if (ki, li) ∈ Ŝi, then for any (k, l) ̸= (ki, li) with k ≤ ki and

l ≤ li, we must have (k, l) /∈ Ŝi, contradicting the assumption that (k′
i, l

′
i) ∈ Ŝi. A similar

argument holds for the case li > l′i and ki ≥ k′
i.

D.2 NON-COOPERATIVE EQUILIBRIUM

First, we need to define Algorithm 1 which constructs a non-cooperative equilibrium.

Algorithm 1. Non-cooperative equilibrium with one-directional influence propogation

Step 1 Initialize the set of participants P ← ∅.

Step 2 Initialize the adjacency matrix X0 ← 0n×n where each element x0
ij = 0.

Step 3 Set the iteration counter t← 0.

Step 4 Repeat the following steps until equilibrium is reached:

� For each node i ∈ {1, ..., n}:

– If there exists (k̂i, l̂i) ∈ Ŝi such that k̂i+ l̂i ≤
∑
j∈N

xt
ji and k̂i ≤

∑
j∈N

spj×xt
ji

(i.e., node i has met its participation threshold, f(Wi, ti, ki(Xt), li(Xt)) ≥

0):

* Increment the iteration counter: t← t+ 1.

* Update the participant set: P ← {i} ∪ P .
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* Update the adjacency matrix Xt as follows:

xt
hj :=


1 if h = i, ghj = 1, and j /∈ P

xt−1
hj otherwise

Here, for each node h ∈ N and j ∈ N :

· Set xt
hj = 1 if node h is the newly added participant i, there exists

a link ghj = 1, and node j is not already in the participant set P .

· Otherwise, retain the previous value xt−1
hj from the previous iteration.

� If the set of participants P has not changed after evaluating all nodes:

– Exit the loop, as an equilibrium has been reached.

Step 5 The final adjacency matrix is denoted as X := Xt.

We label all intermediate steps of the adjacency matrix X as Xt, where each element

xt
ij ∈ Xt. This notation is used for convenience in the proof of Proposition 1. The final

set of participants, P , is defined such that if i ∈ P , then σi = 1, and if j ∈ N \ P , then

σj = 0.

Proof of Proposition 1. Existence. We first prove the existence of a non-cooperative equi-

librium. The proof is constructive, using Algorithm 1. To show that this algorithm identifies

a non-cooperative equilibrium, we verify that it determines a set of participating agents P

and an SMP information diffusion matrix X that satisfy all the necessary properties.

First, by definition, the algorithm adds a link from agent i to agent j only if they are

connected according to matrix G, so xij = 1 only if gij = 1.

Second, the algorithm adds an agent i to the set of participants P at iteration t only if

there exists (k̂i, l̂i) ∈ Ŝi such that the number of incoming links for agent i, as defined by

Xt, is at least k̂i + l̂i, and the number of links generating informative signals is at least k̂i.
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Thus, for all i ∈ P , there exist (k̂i, l̂i) ∈ Ŝi such that
∑
j∈N

spjxji ≥ k̂i and
∑
j∈N

xji ≥ k̂i + l̂i ,

and by definition of the set P , ∀i ∈ P : σi = 1.

Third, for all i /∈ P , at least one of the following must hold for all (k̂i, l̂i) ∈ Ŝi:
∑
j∈N

xji <

k̂i+ l̂i or
∑
j∈N

spjxji < k̂i. By construction, if at iteration t there exists a node i ∈ N \P such

that
∑
j∈N

spjx
t
ji ≥ k̂i and

∑
j∈N

xt
ji ≥ k̂i + l̂i, then Algorithm 1 must add node i to the set P at

some iteration t′ ≥ t.

Fourth, the algorithm adds an outgoing link for node i only if node i is included in the

set P . Therefore, if j /∈ P , it does not have any outgoing links. Once a node i is added to the

set of participants, all links from i to its connected peers in G are formed by construction.

Finally, we demonstrate that matrix X is acyclic. Towards contradiction, suppose there

exists a cycle involving nodes i and i′ such that there is a direct link from i′ to i. Notice that,

if gij = gji = 1 and j is added to the set of participants after i, then xij = 1 and xji = 0.

Thus, if there is a path from i to i′ according to adjacency matrix X, then i′ must be added

to P after i. However, if there is a direct link from i′ to i, it implies that i′ is added to the

set of participants before i. This contradiction shows that the resulting graph characterized

by X must be acyclic.

Therefore, we have proven that Algorithm 1 finds a non-cooperative equilibrium for any

network {N,G, SP, Ŝ}.

Uniqueness. Next, we prove the uniqueness of the equilibrium. Suppose there exists a

non-cooperative equilibrium characterized by the strategy profile σ and participation set P ,

and there exists an acyclic influence propagation matrix X consistent with this equilibiurm

strategy profile.

We define the following sequence of sets: the set S0 = {i ∈ N | Ŝi = {0, 0}} contains

all agents with zero participation thresholds. These agents must be participants in any
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equilibrium, so ∀i ∈ S0, i ∈ P . Now let’s construct a set S1 such that

S1 =

{
i ∈ N \ S0 | ∃(k̂i, l̂i) ∈ Ŝi such that

∑
j∈S0

gij ≥ k̂i + l̂i and
∑
j∈S0

spjgij ≥ k̂i

}
.

That is, S1 consists of agents who can satisfy their participation constraints solely through

connections to agents in S0.

Notice that any agent in set S1 should participate in the stock market in equilibrium.

Towards contradiction, suppose i ∈ S1 and σi = 0. By definition of S1, there exists (k̂i, l̂i) ∈

Ŝi such that
∑
j∈S0

gij ≥ k̂i + l̂i and
∑
j∈S0

spjgij ≥ k̂i. Now, if σi = 0, there must exist some

agent j ∈ S0 such that gij = 1 and xji = 0. However, since σj = 1, the constraint xij+xji = 1

must hold. This implies xij = 1. But if xij = 1, then it follows that σi = 1. So, we get a

contradiction.

Now suppose that ∀i ∈
t⋃

h=0

Sh, we have σi = 1. We define

St+1 =

i ∈ N \
t⋃

h=0

Sh | ∃(k̂i, l̂i) ∈ Ŝi such that
∑

j∈
t⋃

h=0

Sh

gij ≥ k̂i + l̂i and
∑

j∈
t⋃

h=0

Sh

spjgij ≥ k̂i

 .

Then, if i ∈ St+1, it must be that i ∈ P . Towards contradiction, suppose ∃i ∈ St+1

and i /∈ P . Therefore, for any (k̂i, l̂i) ∈ Ŝi it must be that
∑

j∈
t⋃

h=0
Sh

xji < k̂i + l̂i or∑
j∈

t⋃
h=0

Sh

spjxji < k̂i. At the same time, from definition of St+1, there exists (k̂i, l̂i) ∈ Ŝi

such that
∑

j∈
t⋃

h=0
Sh

gij ≥ k̂i + l̂i and
∑

j∈
t⋃

h=0
Sh

spjgij ≥ k̂i. Hence, there exist j ∈
t⋃

h=0

Sh

such that gij = gji = 1, but xji = 0. If i /∈ P , then σi = 0, therefore it must also be that

xij = 0 according to the definition of non-cooperative equilibrium. However, the definition

also requires that if j is a participant and gij = gji = 1 then xij + xji = 1. Therefore, we get

a contradiction, and if i ∈ St+1 then it must be that i ∈ P .
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Since the number of agents is finite, there exists a t′ <∞ such that St′ = ∅, which means

that ∀t > t′, St = ∅. Let T be such that ST ̸= ∅ and ST+1 = ∅. By the earlier argument, we

have by induction that
T⋃

h=0

Sh ⊆ P .

Next, we show that for any i ∈ P it must be that i ∈
T⋃

h=0

Sh. Again, we prove this by

contradiction. If i /∈
T⋃

h=0

Sh, it means for any (k̂i, l̂i) ∈ Ŝi either
∑

j∈
T⋃

h=0
Sh

gij < k̂i + l̂i or∑
j∈

T⋃
h=0

Sh

spjgij < k̂i. Therefore, if i ∈ P , it must be that, according to the corresponding

influence propagation matrix X there exists some node i′ such that i′ ∈ N \
T⋃

h=0

Sh and

xi′i = 1, which means σi′ = 1. i′ belonging to N \
T⋃

h=0

Sh implies that for any (k̂i′ , l̂i′) ∈ Ŝi′

either
∑

j∈
T⋃

h=0
Sh

gi′j < k̂i′ + l̂i′ or
∑

j∈
T⋃

h=0

Sh

spjgi′j < k̂i′ . This means we must find another

node i′′ ∈ N \
T⋃

h=0

Sh such that xi′′i′ = 1 and σi′′ = 1. Repeating this argument for successive

nodes, we either encounter a node that violates the participation conditions for the SMP

(i.e., it has an insufficient number of participating peers) or we find a cycle, which contradicts

the requirement that the matrix X be acyclic. Thus, we reach a contradiction, and it follows

that P =
T⋃

h=0

Sh. Therefore, the non-cooperative equilibrium is unique.

D.3 IDENTIFYING MATRIX X: EXAMPLE

Let us consider an example. Suppose there are three agents, each connected to the others.

For simplicity, assume that any participating agent also generates an informative signal.

Consequently, in any equilibrium, it must hold that pi = ki, li = 0. This allows us to

use pi as the relevant participation threshold instead of considering combinations of two

variables to illustrate the idea. Now, assume agent 1 has a participation threshold of 0, while

agents 2 and 3 have participation thresholds equal to 1. In this case, the only equilibrium

satisfying the properties of the influence propagation process is the one where all three agents
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participate, and it is also a non-cooperative equilibrium. However, the matrix X may have

different configurations. For instance, it could contain the links x1,2 = x1,3 = x2,3 = 1

and x2,1 = x3,1 = x3,2 = 0, or alternatively, it could have x1,2 = x1,3 = x3,2 = 1 and

x2,1 = x3,1 = x2,3 = 0 configuration.
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E. APPENDIX: MAXIMAL SOCIAL COOPERATION

Similar to a non-cooperative equilibrium, we can construct an equilibrium with maximum

participation, assuming two-way influence propagation. This means that social influence and

information can be transmitted through the same link in both directions. Intuitively, this

allows agents to strategically collaborate in both groups and pairs to learn and exchange

different pieces of information and influence each other’s decision to participate. As before,

we assume that agents participating in the stock market share information with their peers,

and any agent who is influenced by participating peers experiences a reduction in the SMP

participation cost through the social utility channel.

To accommodate two-way influence propagation, we need to slightly redefine the in-

fluence propagation process compared to the previous analysis. For convenience, we will

characterize it by the matrix X̂, similar to the earlier approach. However, there will be a

few important changes in how we define the matrix X̂ compared to the one-way influence

propagation game.

First, the link in matrix X̂ between agents i and j indicates that information and in-

fluence flow in both directions – from i to j and from j to i – thereby reducing the SMP

participation cost and improving signal precision for both agents, and that both agents par-

ticipate in the stock market. Consequently, if agent i participates and is connected to agent

i′, who does not participate, we say that x̂ii′ = x̂i′i = 0. It is important to note that the ab-

sence of a link no longer implies that there is no actual information or influence propagation

from i to i′; rather, it simply means that this influence propagation does not lead to agent i′

participating. Nonetheless, we maintain the assumption that if agent i participates, it affects

its peer i′ decision to participate by reducesing the SMP cost for agent i′ and, potentially,

improving stock return signal precision. This represents a key difference from the definition

of the influence propagation matrix used in the case of one-way influence propagation. While

this difference is technical, it allows us to account for two-way influence propagation when
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proving the key results. Therefore, matrices X and X̂ should not be directly compared,

as they represent different concepts. Matrix X captures the actual influence propagation

between agents in a one-way influence propagation game, while X̂ captures only the links

that lead to two-way influence and information flow between participating agents.

Therefore, we can define the influence propagation process for the two-way influence

propagation game as follows:

Definition 3. Two-Way SMP Influence Propagation Process: This process de-

scribes how agents in a network influence each others’ decision regarding stock market par-

ticipation. It is represented by the adjacency matrix X̂, where x̂ij ∈ X̂ equals 1 if both agents

i and j participate (σi = σj = 1) and exert influence on each others’ decision to participate

through social utility and social learning channels; otherwise, it equals 0. The SMP influence

propagation process is characterized by the following properties:

1. Agents i and j can only exert influence on each other if they are connected in the

network {N,G, SP, Ŝ}, which means that gij = 1.

2. Influence propagates in both directions between any two connected agents who partici-

pate in the stock market. Specifically, for any agents i and j, x̂ij = x̂ji = 1 if and only

if gij = gji = 1 and σi = σj = 1. Otherwise, x̂ij = x̂ji = 0.

3. The stock market participation cost for agent i decreases in proportion to the number of

its participating peers, calculated as
∑

j∈N gijσj; and signal precision depends on num-

ber of participating peers who generate informative signals, calculated as
∑

j∈N spjgijσj.

This cost reduction and increase in signal precision are not determined by the matrix

X̂ which accounts only for reciprocal links.

Now, we can define a Nash Equilibrium strategy profile in the game with two-way influ-

ence propagation game:

Definition 4. The strategy profile σ̂ is a Nash Equilibrium profile in two-way influence
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propagation game if and only if for each i ∈ N , σi = 1 if and only if there exists (k̂i, l̂i) ∈ Ŝi

such that
∑

j∈N gjiσj ≥ k̂i + l̂i and
∑

j∈N spjgjiσj ≥ k̂i; σi = 0 otherwise.

Notice that the definition of a Nash equilibrium is not reliant on the definition of the

matrix X̂.

Given that we now allow for two-way influence propagation and all possible cooperation

among groups of nodes, this can lead to multiple equilibria. Referring back to the previous

example in Figure 1, we observe that in the two-way influence propagation game, both sets

of participating agents represented in Figures 1b and 1c can be supported as equilibrium

outcomes in the two-way influence propagation game. Therefore, we seek to identify the

most beneficial social outcome that maximizes the number of participating agents through

maximum cooperation, which corresponds to Case 2 in Figure 1c. We demonstrate that the

following algorithm identifies this equilibrium profile and the corresponding matrix X̂ for

a given network structure {N,G, SP, Ŝ} in the two-way influence propagation game with

social cooperation:

Algorithm 2. Maximum Benefit Cooperative Equilibrium with Two-Way Influence Propa-

gation

Step 1 Initialize the vector of potential participants P ← N .

Step 2 Initialize the iteration counter t← 0 and the adjacency matrix X̂0 ← G.

Step 3 Repeat the following steps until equilibrium is reached:

� For each node i ∈ {1, . . . , n}:

– If for all (k̂i, l̂i) ∈ Ŝi either k̂i + l̂i >
∑
j∈N

x̂t
ji or k̂i >

∑
j∈N

spjx̂
t
ji (i.e., node

i doesn’t meet its participation threshold):

* Increment the iteration counter: t← t+ 1.

* Update the vector of potential participants by excluding this node: P ←
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P \ {i}.

* Update the adjacency matrix X̂t as follows:

x̂t
hj :=


0, if h = i

x̂t−1
hj , otherwise

x̂t
jh := x̂t

hj

Here, for each node h ∈ N and j ∈ N :

· Set x̂t
hj = 0 and x̂t

jh = 0 if node h is the newly removed participant

i, meaning all links from i must be removed.

· Otherwise, retain the previous value x̂t−1
hj from the previous iteration.

� If the set of potential participants P has not changed after evaluating all nodes:

– Exit the loop, as an equilibrium has been reached, and the final set of

participants P has been found.

� The final adjacency matrix is denoted as X̂ := X̂t.

Proposition 2. For any given network structure {N,G, SP, Ŝ}, Algorithm 2 finds a Nash

Equilibrium profile characterized by the set of participants P and information flow matrix X̂

such that if there exists another Nash Equilibrium profile with the set of participating agents

P ′ ̸= P , then P ′ ⊂ P .

Proof. We first demonstrate that Algorithm 2 returns the equilibrium set of participating

agents according to the equilibrium notion defined in Definition 4. Initially, the set of

potential participating agents includes all nodes, and the matrix X̂0 is equivalent to the

adjacency matrix G. Let P0 = N represent the initial set of potential participants, and let

Pt denote the set of potentially participating agents returned by Algorithm 2 at step t. P
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represents the final set of participating agents when the algorithm terminates.

At each step t, an agent i is removed from the set of potential participants Pt if and only

if for all (k̂i, l̂i) ∈ Ŝi either k̂i+ l̂i >
∑
j∈N

x̂t
ji or k̂i >

∑
j∈N

spjx̂
t
ji. So, the participation threshold

cannot be met even if all remainig peers according to the current matrix X̂0 exert influence

on player i. Once removed, the matrix X̂t is updated by deleting all links connecting agent i

to its neighbors. Consequently, if the participation threshold condition is not met at step t,

it can’t be met at any step t′ where t′ > t. Thus, when the algorithm converges in finite time

T , it holds for any i ∈ N \P that for all (k̂i, l̂i) ∈ Ŝi either k̂i+ l̂i >
∑
j∈N

x̂t
ji or k̂i >

∑
j∈N

spjx̂
t
ji.

At the same time, for every i ∈ P , it must be that there exists (k̂i, l̂i) ∈ Ŝi such that

k̂i + l̂i ≤
∑
j∈N

x̂t
ji and k̂i ≤

∑
j∈N

spjx̂
t
ji, as this is the stopping criterion of the algorithm.

Therefore, the algorithm indeed returns the equilibrium set of participating agents P , where

σ̂i = 1 if i ∈ P and σ̂i = 0 if i ∈ N \ P .

Next, we prove that if there exists another Nash equilibrium with a set of participating

agents P ′ ̸= P , then P ′ ⊂ P . We will show this by induction.

Initially, P0 = N and X̂0 = G. If agent i is excluded from the set of potential participants,

so that P1 = P0 \ {i}, it follows that for any (k̂i, l̂i) ∈ Ŝi either k̂i + l̂i >
∑
j∈N

gji or k̂i >∑
j∈N

spjgji. Therefore, agent i cannot be a participant in any equilibrium, implying that

i /∈ P ′. Moreover, if agent i does not participate in any equilibrium, it will not exert

influence on her peers in any equilibrium. Hence, all links connecting agent i to her peers

can be removed from matrix G without affecting the equilibrium outcomes of the game. This

allows us to replace the adjacency matrix G with X̂1, where:

x̂1
hj :=


0, if h = i

ghj, otherwise
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and

x̂1
jh := x̂1

hj.

Now, suppose that at step t, the set N \P t contains all nodes that never become partic-

ipants in any equilibrium. The matrix X̂t is the reduced version of matrix G, with all links

connecting nodes in N \ P t removed. By the same reasoning, if agent i is removed at step

t+1, she cannot be a participant in any equilibrium. Therefore, all links connecting agent i

to its peers can be deleted, as no information will flow through these links in any equilibrium

under the two-way information flow process. The adjacency matrix can then be updated to

X̂t+1 as follows, without altering the equilibrium outcomes:

x̂t+1
hj :=


0, if h = i

x̂t
hj, otherwise

and

x̂t+1
jh := x̂t+1

hj .

Thus, we have shown that any node excluded from the set of participating agents by

Algorithm 2 cannot be a participant in any other equilibrium. Therefore, if there exists

another equilibrium characterized by the set of participating agents P ′ ̸= P then P ′ ⊂ P .

It is also straightforward to show that for a fixed network structure {N,G, SP, Ŝ}, the

set of participants in a non-cooperative equilibrium of the one-way information flow game

can be supported as an equilibrium outcome in the two-way information flow game. This

equilibrium outcome corresponds to the scenario with the minimum possible number of

participating agents among all equilibria of the two-way information flow game.
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E.1 COMPARING COOPERATIVE AND NON-COOPERATIVE EQUILIBRIA

We now compare the outcomes for the cooperative and non-cooperative equilibria. We begin

by comparing the effect of connectivity in Figure E1. The left panel a) provides the results

from the cooperative equilibrium panel b) on the right provides the results for the non-

cooperative equilibrium. Panel b) is the same figure as 3, to ease comparison. Overall, we

see that the effect of connectivity is very similar across the two figures. The average SMP

in both figures exhibits the same S-shape, where the marginal effect of adding one more

connection is small for low levels of connectivity. The marginal effect of adding one more

connection increases rapidly as we move to the right in the figures, but slows down again

as the average number of connections become sufficiently high. The cooperative equilibrium

exhibits a slightly higher level of SMP for a given level of connectivity, but exhibits a similar

marginal effect of adding one more connection. The marginal effect of connectivity for

different income groups is also similar. The steep rise in the effect of connectivity naturally

starts at earlier levels of average connectivity in the cooperative equilibrium, due to the

more efficient information sharing between cooperating agents. However, once information

sharing has started to play a role, the S-shape pattern is similar for a given income group in

the two different figures.

We compare the simulated SMP in the cooperative and non-cooperative equilibria for

all permutations of the model in Figure E2. Overall, we have eleven different values for

both Gini and Homophily, and 15 values for Connectivity, giving us 11 ∗ 11 ∗ 14 = 1, 815

different permutations for both the cooperative and non-cooperative equilibria. The corre-

lation coefficient is 0.9344 between the level of stock market participation in the cooperative

and non-cooperative equilibria. The below figure shows a close correspondence between the

cooperative and non-cooperative equilibrium at both low and high average levels of stock

market participation. The participation rates in the cooperative equilibrium is consistently

higher than for the non-cooperative equilibria in the middle of the graph. This is precisely

88



0

.2

.4

.6

.8

1

0 2 4 6 8 10 12 14
Average Connectivity,  cooperative eq.

Average P20 P40 P60 P80 P100

Stock market participation (%)

(a) Cooperative equilibrium
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Figure E1. Stock market participation and connectivity in a cooperative
equilibrium
Notes: The figure in both panels plots stock market participation (y-axis) against the average number of connections (x-axis).
Panel a) describes a cooperative equilibrium with the green solid line plotting the average stock market participation among all
agents; the dark navy, dark green, maroon, cranberry, and olive dashed lines plotting average participation among agents in below
20th, between 20th-40th, between 40th-60th, between 60th-80th, and above 80th percentile of income distribution, respectively.
Panel b) describes a non-cooperative equilibrium with the orange solid line plotting the average stock market participation
among all agents; the black, gray, blue, green, and light purple dashed lines plotting average participation among agents
in below 20th, between 20th-40th, between 40th-60th, between 60th-80th, and above 80th percentile of income distribution,
respectively. We set the homophily parameter to 0.5 and the ex-ante Gini coefficient to 0.4 for the simulations.

the region where connectivity and homophily have the largest impact in both models, but the

cooperative equilibrium generates more efficient information sharing and so leads to higher

stock market partipation rates. We can see this by examining the colors of the dots, where

we see that the difference in participation rates between the cooperative and non-cooperative

equilibria occurs when connectivity is low.
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Figure E2. Stock market participation in cooperative and non-cooperative
equilibria
Notes: The figure plots stock market participation in the baseline non-cooperative equlibrium (y-axis) against stock market
participation in the cooperative equlibrium. The color of the dots indicates the level of connectivity, whose values are noted on
the right-hand side of the figure.
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